## Outmigrant Trapping of Juvenile Salmonids in the Lower Tuolumne River, 2010



Submitted To:
Turlock Irrigation District Modesto Irrigation District

Prepared By:
Chrissy L. Sonke
Andrea N. Fuller
Shaara M. Ainsley


FISHBIO
599 Hi Tech Parkway
Oakdale, Ca. 95361
209.847.6300
www.fishbio.com
December 2010
INTRODUCTION ..... 1
Study Area Description ..... 1
Purpose and History of Study ..... 1
METHODS ..... 5
Juvenile Outmigrant Monitoring ..... 5
Sampling Gear and Trapping Site Locations ..... 5
Trap Monitoring ..... 5
Trap Efficiency Releases ..... 6
Monitoring Environmental Factors .....  8
Flow Measurements and Trap Speed ..... 8
River Temperature, Relative Turbidity and Dissolved Oxygen ..... 8
Estimating Trap Efficiency and Chinook Abundance ..... 9
RESULTS AND DISCUSSION ..... 10
Chinook Salmon ..... 10
Number of Unmarked Chinook Salmon Captured ..... 10
Trap Efficiency ..... 14
Estimated Chinook Salmon Abundance and Environmental Factors ..... 26
Chinook Salmon Length at Migration ..... 30
Chinook Salmon Condition at Migration ..... 34
Oncorhynchus mykiss (Rainbow Trout) ..... 35
Other Fish Species Captured ..... 36
REFERENCES CITED ..... 39

## LIST OF FIGURES

Figure 1. Location map of study area on the Tuolumne River. ..... 1
Figure 2. Livecar used for holding trap efficiency test fish. ..... 7
Figure 3. Daily catch of unmarked Chinook salmon at Waterford and river flow at La Grange (LGN) during 2010. ..... 12
Figure 4. Daily catch of unmarked Chinook salmon at Grayson and river flow at Modesto (MOD) during 2010. ..... 12
Figure 5. Total annual salmon catch at Waterford during 2006-2010 ..... 13
Figure 6. Total annual salmon catch at Shiloh/Grayson during 1995-2010. ..... 14
Figure 7. Trap efficiency estimates at Waterford relative to river flow at La Grange (LGN) during 2010 ..... 19
Figure 8. Trap efficiency observations at Grayson relative to river flow at Modesto (MOD), 1999-2008 ..... 20
Figure 9. Daily estimated abundance of Chinook salmon at Waterford based on trap efficiencies conducted in 2010 at Waterford during the fry period, and trap efficiencies conducted in 2007 at Waterford (at flows $<1,000 \mathrm{cfs}$ ) and at the $7 / 11$ and Deardorff traps in 1998-2000 (at flows > 1,000cfs) for the parr/smolt period. ......... 21
Figure 10. Juvenile salmon passage by lifestage at Waterford during 2010. ..... 23
Figure 11. Daily estimated passage of unmarked Chinook salmon at Waterford and river flow at La Grange (LGN) during 2010. ..... 24
Figure 12. Daily estimated passage of unmarked Chinook salmon at Grayson and river flow at Modesto (MOD) during 2010. ..... 24
Figure 13. Total estimated Chinook passage at Waterford, 2006-2009, and median total estimated passage in 2010 ( $*$ range $=28,314-54,671$ ). ..... 25
Figure 14. Total estimated Chinook passage at Shiloh and Grayson during 1995-2010.. 26Figure 15. Daily estimated passage of unmarked Chinook salmon at Waterford and dailyaverage water temperature at the Waterford trap during 2010.27
Figure 16. Daily estimated passage of unmarked Chinook salmon at Grayson and daily average water temperature at the Grayson trap during 2010. ..... 27
Figure 17. Daily estimated passage of unmarked Chinook salmon and instantaneous turbidity at Waterford during 2010. ..... 28
Figure 18. Daily estimated passage of unmarked Chinook salmon and instantaneous turbidity at Grayson during 2010. ..... 29
Figure 19. Daily rainfall measured at Don Pedro Reservoir and instantaneous turbidity at Waterford during 2010. ..... 29
Figure 20. Individual fork lengths of juvenile salmon captured at Waterford during 2010.31
Figure 21. Daily minimum, average, and maximum fork lengths of unmarked Chinook salmon captured. ..... 31
Figure 22. Average fork length of juvenile Chinook salmon captured at Waterford and Grayson by Julian week during 2010. ..... 32
Figure 23. Estimated Chinook passage by 10 mm fork length intervals at Waterford during 2010. ..... 32
Figure 24. Individual fork lengths of juvenile salmon captured at Grayson during 2010.33

Figure 25. Daily minimum, average, and maximum fork lengths of unmarked Chinook
salmon captured................................................................................................ 33
Figure 26. Estimated Chinook passage by 10 mm fork length intervals at Grayson during 2010.34
Figure 27. Individual fork length and weight of individual juvenile Chinook salmon measured at Waterford and Grayson during 2010. ..... 35

Figure 28. Date, size and location of $O$. mykiss captured at Waterford (W) and Grayson (G). 36

## LIST OF TABLES

Table 1. Rotary screw trap monitoring in the Lower Tuolumne River, 1995-2010. .......... 2
Table 2. Catch by lifestage at Waterford and Grayson, 2010........................................... 10
Table 3. Trap efficiency results used to estimate daily trap efficiencies at Waterford..... 16
Table 4. Trap efficiency results from 1999-2008 used to derive the regression equation for predicting daily trap efficiencies at Grayson........................................................ 17
Table 5. Estimated passage by lifestage at Waterford and Grayson during 1995-2010... 22
Table 6. Estimated number of juvenile salmon produced per female spawner, 2006-2010.
Table 7. Non-salmonid species captured at Waterford and Grayson during 2010. .......... 37

## INTRODUCTION

## Study Area Description

The Tuolumne River is the largest of three major tributaries (Tuolumne, Merced, and Stanislaus Rivers) to the San Joaquin River, originating in the central Sierra Nevada in Yosemite National Park and flowing west between the Merced River to the south and the Stanislaus River to the north (Figure 1). The San Joaquin River itself flows north and joins the Sacramento River in the Sacramento-San Joaquin Delta within California's Central Valley. The Tuolumne River is dammed at several locations for generation of power, water supply, and flood control - the largest impoundment is Don Pedro Reservoir.

The lower Tuolumne River corridor extends from its confluence with the San Joaquin River to La Grange Dam at river mile (RM) 52.2. The La Grange Dam site has been the upstream limit for anadromous fish migration since at least 1871.


Figure 1. Location map of study area on the Tuolumne River.

## Purpose and History of Study

Rotary screw traps (RST) have been operated since 1995 at various locations in the Tuolumne River during the winter/spring period to meet several objectives, including monitoring the abundance and migration characteristics of juvenile salmonids and other fishes, and evaluating reach-specific survival relative to environmental conditions (Table 1). The Turlock Irrigation District and Modesto Irrigation District ('Districts'), and the City and County of San Francisco funded the entire RST program in 1995-97 and 2003-2010 and at 2-3 upstream sites in 19982000.

Current sampling locations include Grayson River Ranch (Grayson - RM 5.2) near the mouth of the Tuolumne River and a site downstream of the city of Waterford (RM 29.8). Rotary screw trap monitoring has been conducted annually near the mouth since 1995 (Shiloh in 1995-1998 and Grayson in 1999-2010) for the purpose of monitoring the abundance and migration characteristics of juvenile salmonids and other fishes. Since 2006, sampling has also been conducted annually near Waterford, about 25 miles upstream of the Grayson site, to provide comparative information on the size, migration timing, and production of juvenile fall-run Chinook salmon, as well as data on other fishes.

Table 1. Rotary screw trap monitoring in the Lower Tuolumne River, 1995-2010.

| Year | Site | Period <br> Sampled | Proportion of Outmigration Period Sampled | Total Catch | Total Estimated Passage | Method of Passage Estimation | Results Reported In |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1995 | $\begin{gathered} \text { Shiloh } \\ \text { (RM 3.4) } \\ \hline \end{gathered}$ | $\begin{gathered} \text { Apr 25- } \\ \text { Jun } 01 \\ \hline \end{gathered}$ | 24\% | 141 | 15,667 ${ }^{1}$ |  | Heyne and Loudermilk $\qquad$ |
| 1996 | Shiloh | Apr 18 - <br> May 29 | 27\% | 610 | 40,385 ${ }^{1}$ |  | Heyne and Loudermilk 1997 |
| 1997 | Shiloh | Apr 18 - <br> May 24 | 24\% | 57 | $2,850{ }^{1}$ |  | Heyne and Loudermilk 1998 |
| 1998 | Turlock <br> Lake State <br> Rec. (RM 42.0) | Feb 11- <br> Apr 13 | 41\% | 7,125 | 259,581 ${ }^{1}$ | Mean efficiency | Vick and others 1998 |
|  | $\begin{aligned} & \text { 7/11 (RM } \\ & 38.5) \end{aligned}$ | Apr 15- <br> May 31 | 31\% | 2,413 |  |  | Vick and others 1998 |
|  | Charles <br> Road (RM 25.0) | $\begin{gathered} \text { Mar } 27- \\ \text { Jun } 01 \end{gathered}$ | 43\% | 981 | 66,848 ${ }^{1}$ | Mean efficiency | Vick and others 1998 |
|  | Shiloh | Feb 15Jul 01 | 70\% | 2,546 | 1,615,673 ${ }^{1}$ | Regression | Blakeman 2004a |
| 1999 | 7/11 | Jan 19- <br> May 17 | 79\% | 80,792 | 1,737,052 ${ }^{1}$ | \%Flow sampled | Vick and others 2000 |
|  | $\begin{aligned} & \text { Hughson } \\ & \text { (RM 23.7) } \end{aligned}$ | Apr 08- <br> May 24 | 31\% | 449 | 7,175 ${ }^{1}$ | \%Flow sampled | Vick and others 2000 |
|  | Grayson (RM 5.2) | Jan 12- <br> Jun 06 | 93\% | 19,327 | 755,604 ${ }^{2}$ | Multiple regression | Vasques and Kundargi <br> 2001 |
| 2000 | 7/11 | $\begin{aligned} & \text { Jan 10- } \\ & \text { Feb } 27 \end{aligned}$ | 32\% | 61,196 | 298,755 ${ }^{1}$ | \%Flow sampled | Hume and others 2001 |
|  | Deardorff <br> (RM 35.5) | Apr 09- <br> May 25 | 31\% | 634 | 15,845 ${ }^{1}$ | \%Flow sampled | Hume and others 2001 |
|  | Hughson | Apr 09- <br> May 25 | 31\% | 264 | 2,942 ${ }^{1}$ | \%Flow sampled | Hume and others 2001 |
|  | Grayson | $\begin{gathered} \text { Jan 09- } \\ \text { Jun } 12 \end{gathered}$ | 95\% | 2,250 | 99,797 ${ }^{2}$ | Multiple regression | Vasques and Kundargi $2001$ |

${ }^{1}$ Passage estimate reported in the annual report cited.
${ }^{2}$ Passage estimate derived from multiple regression equation based on data collected from 1999-2006 and 2008 as described in this report.

| Year | Site | Period <br> Sampled | Proportion of Outmigration Period Sampled | Total Catch | Total Estimated Passage | Method of Passage Estimation | Results Reported In |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2001 | Grayson | $\begin{aligned} & \text { Jan 03- } \\ & \text { May } 29 \end{aligned}$ | 97\% | 6,478 | 99,584 ${ }^{2}$ | Multiple regression | Vasques and Kundargi $2002$ |
| 2002 | Grayson | $\begin{gathered} \text { Jan } 15- \\ \text { Jun } 06 \end{gathered}$ | 91\% | 436 | $14,135^{2}$ | Multiple regression | Blakeman 2004b |
| 2003 | Grayson | $\begin{gathered} \text { Apr 01- } \\ \text { Jun } 06 \end{gathered}$ | 40\% | 359 | 9,091 ${ }^{2}$ | Multiple regression | Blakeman 2004c |
| 2004 | Grayson | $\begin{aligned} & \text { Apr 01- } \\ & \text { Jun } 09 \end{aligned}$ | 40\% | 509 | $17,771^{2}$ | Multiple regression | Fuller 2005 |
| 2005 | Grayson | Apr 02- <br> Jun 17 | 39\% | 1,317 | $255,710^{2}$ | Multiple regression | Fuller and others 2006 |
| 2006 | $\begin{gathered} \hline \text { Waterford } \\ 1(\mathrm{RM} \\ 29.8) \\ \hline \end{gathered}$ | $\begin{aligned} & \text { Jan 25- } \\ & \text { Apr } 12 \end{aligned}$ | 79\% | 8,648 | 178,034 ${ }^{1}$ | \%Flow sampled | Fuller and others 2007 |
|  | $\begin{gathered} \text { Waterford } \\ 2(\mathrm{RM} \\ 33.5) \\ \hline \end{gathered}$ | $\begin{gathered} \text { Apr 21- } \\ \text { Jun } 21 \end{gathered}$ |  | 458 | 178,034 ${ }^{1}$ |  |  |
|  | Grayson | $\begin{aligned} & \text { Jan 25- } \\ & \text { Jun } 22 \end{aligned}$ | 84\% | 1,594 | 71,670 ${ }^{2}$ | Multiple regression | Fuller and others 2007 |
| 2007 | Waterford (RM 29.8) | $\begin{aligned} & \text { Jan 11- } \\ & \text { Jun } 05 \end{aligned}$ | 93\% | 3,312 | 57,801 ${ }^{1}$ | Average trap efficiency | Fuller 2008 |
|  | Grayson | Mar 23- <br> May 29 | 45\% | 27 | $923{ }^{2}$ | Multiple regression | Fuller 2008 |
| 2008 | Waterford | Jan 8- <br> Jun 2 | 96\% | 3,350 | 24,894 ${ }^{1}$ | Average trap efficiency | Palmer and Sonke $2008$ |
|  | Grayson | $\begin{gathered} \text { Jan } 29- \\ \text { Jun } 4 \end{gathered}$ | 82\% | 193 | 3,283 ${ }^{2}$ | Multiple regression | Palmer and Sonke $2008$ |
| 2009 | Waterford | Jan 7- <br> June 9 | 96\% | 3,725 | 37,174 ${ }^{1}$ | Average trap efficiency | Palmer and Sonke $2010$ |
|  | Grayson | $\begin{aligned} & \text { Jan 8- } \\ & \text { Jun } 11 \end{aligned}$ | 95\% | 155 | 4,677 ${ }^{2}$ | Multiple regression | Palmer and Sonke $2010$ |
| 2010 | Waterford | $\begin{aligned} & \text { Jan 5- } \\ & \text { Jun } 11 \end{aligned}$ | 97\% | 2,281 | $\begin{aligned} & 29,294- \\ & 55,941^{3} \end{aligned}$ | Average trap efficiency | This report |
|  | Grayson | $\begin{aligned} & \text { Jan 6- } \\ & \text { Jun } 17 \end{aligned}$ | 97\% | 52 | 4,443 ${ }^{2}$ | Multiple regression | This report |

[^0]${ }^{3}$ Trap efficiency data not available for parr/smolt lifestage at high flows. A range of trap efficiencies from the 7/11 (RM 38) and Deardorff (RM 35.5) traps was used to obtain a range of passage estimates in 2010.

## METHODS

## Juvenile Outmigrant Monitoring

## Sampling Gear and Trapping Site Locations

Rotary screw traps (E.G. Solutions, Eugene, OR) were installed and operated at the Waterford and Grayson sites. The traps consist of a funnel-shaped core suspended between two pontoons. Traps are positioned in the current so that water enters the 8 ft wide funnel mouth and strikes the internal screw core, causing the funnel to rotate. As the funnel rotates, fish are trapped in pockets of water and forced rearward into a livebox, where they remain until they are processed by technicians.

The single Waterford trap was located at RM 29.8, approximately two miles downstream of the Hickman Bridge. The trap was held in place by a $3 / 8$-inch overhead cable strung between two large trees located on opposite banks. Cables fastened to the front of each pontoon were attached to the overhead cable. Warning signs, flashing safety lights and buoys marked the location of the trap and cables for public safety. Sufficient velocity at the trap during 2010 precluded the need for the "wings" used to increase catch efficiency during 2008 and a portion of 2009.

At Grayson two traps were fastened together, in a side-by-side configuration, with $1 / 2$ inch Ultra High Molecular Weight (UHMW) plastic strips that were bolted to each inner-pontoon at the cross-bars. The traps were positioned and secured in place by two 50 lb plow-style anchors (Delta Fast-Set model, Lewmar, Havant, UK). The anchors were fastened to the outer-pontoons of the traps using $3 / 8$-inch stainless steel leader cables (each outer-pontoon was attached to a separate in-line anchor) and the length of each leader cable was adjusted using a manual winch that was bolted to the outer-pontoon. The downstream force of the water on the traps kept the leader cables taut. Sufficient velocity at the traps during 2010 precluded the need for the "weir" structure used to increase catch efficiency during 2008 and 2009.

## Trap Monitoring

Sampling at Waterford began on January 5, 2010. The trap was operated continuously (24 hours per day, 7 days per week) until June 11, 2010, when sampling was terminated due to consistently low catch.

Sampling at Grayson began on January 6, 2010. The traps were operated continuously (24 hours per day, 7 days per week) until sampling was terminated on June 17, 2010, due to consistently low catch.

Traps at both locations were checked at least every morning throughout the sampling period, with additional trap checks conducted as conditions required. During each trap check the contents of the liveboxes were removed, all fish were identified and counted, and any marked
fish were noted. In addition, random samples of up to 50 salmon and 20 of each non-salmon species during each morning check, and up to 20 salmon and 10 of each non-salmon species during each evening check, were anesthetized, measured (fork lengths in millimeters), and recorded. Salmon were assigned to a lifestage category based on a fork length scale, where $<50$ $\mathrm{mm}=$ fry, $50-69 \mathrm{~mm}=$ parr, and $\geq 70 \mathrm{~mm}=$ smolt. In addition, the smolting appearance of all measured salmon and trout was rated based on a seven category scale, where $1=$ yolk-sac fry, 2 $=$ fry, 3 = parr, $4=$ silvery parr, $5=$ smolt, $6=$ mature adult, and IAD $=$ immature adult (Interagency Ecological Program, unpublished). Weights (to nearest tenth of a gram) were taken from up to 50 salmon each week (i.e., Monday through Sunday) and from all trout using a digital balance (Ohaus Corporation, Pine Brook, NJ). Fish were weighed in a small, plastic container partially filled with stream water, which was tared prior to measuring each individual fish. Fish were then placed in a container with freshwater and allowed to recover before release.

Daily salmon catch was equivalent to the number of salmon captured during a morning trap check plus the number of salmon captured during any trap check(s) that occurred within the period after the previous morning check. For example, the daily salmon catch for April 10 is the sum of salmon from the morning trap check on April 10 and the evening trap check conducted on April 9. Separate daily catch data were maintained for marked and unmarked salmon.

After all fish were measured and recorded, the traps were cleaned to prevent accumulation of debris that might impair trap rotation or cause fish mortality within the liveboxes. Trap cleaning included removal of debris from all trap surfaces and from within the liveboxes. The amount of debris load in the livebox was estimated and recorded whenever a trap was checked.

## Trap Efficiency Releases

Trap efficiency tests using naturally produced juvenile salmon were conducted to estimate the proportion of migrating juvenile salmon sampled by the Waterford trap. Juvenile salmon captured in the Waterford trap were used to conduct tests whenever catches were sufficient to obtain a group of at least 30 fish over no more than two days. Eleven groups of naturally produced juvenile salmon (ranging in number from 29 to 116 fish) were marked and released at RM 30 (about 0.2 miles upstream of the trap) between January 21 and March 14. All marked fish were released after dark. Catches of naturally produced juvenile salmon at Waterford after March $14^{\text {th }}$ were insufficient for trap efficiency tests. Likewise, catches of natural fish throughout the study period were insufficient for trap efficiency tests to be conducted at Grayson. Additionally, hatchery produced fish were not available for tests during 2010. Trap efficiency calculations for both sites are discussed in further detail below.

## Holding Facility and Transport Method

Juvenile salmon were transferred from liveboxes into either 5-gallon buckets or 20 -gallon insulated coolers depending on the number of fish, temperature, and distance traveled, and were
transported by boat upstream to the release site.
At release sites, fish were held in livecars constructed of 15 " diameter PVC pipe cut into 34 " lengths (Figure 2). A rectangle approximately 6 " wide by 23 " long was cut longitudinally along the pipe and fitted with aluminum or stainless steel mesh. Livecars were tethered to vegetation or other structures and kept in areas of low water velocity to reduce fish stress.


Figure 2. Livecar used for holding trap efficiency test fish.

## Marking Procedure

At the Waterford trapping site, naturally produced juvenile salmon were marked onshore immediately adjacent to the trap and were then transported to the release site where they were held until release. A photonic marking system was used for marking all of the release groups because of the high quality of marks and the ability to use the marking equipment in rapid succession. All fish were anesthetized with Tricaine-S before the appropriate mark was applied, and then a marker tip was placed against the caudal fin and orange photonic dye was injected into the fin rays. The photonic dye (DayGlo Color Corporation, Cleveland, OH) was chosen because of its known ability to provide a highly visible, long-lasting mark.

## Pre-release Sampling

Prior to release, marked fish were sampled for length and mark retention. Fifty fish (or the entire release group if fewer than 50 fish) were randomly selected from each release group, anesthetized, and examined for marks; the remaining fish in each group were enumerated. Mark retention was rated as present or absent. A total of zero fish in 2010 were found to have no marks upon examination, consequently, all fish released were presumed to have visible marks.

## Release Procedure

Livecars were located several feet away from the specific release point and fish were poured from the live cars into buckets for release. Fish were released by placing a dip net into the bucket, scooping up a "net-full" of fish and then emptying the fish into the river, allowing them to swim away. After releasing a "net-full" of fish, about 30 seconds to 3 minutes elapsed before another group of about a "net-full" was released. The amount of time between "net-full" releases varied depending on how fast fish swam away after their release. Total release time for marked groups ranged from ten minutes to 30 minutes depending on the group size.

## Monitoring Environmental Factors

## Flow Measurements and Trap Speed

Provisional daily average flow for the Tuolumne River at La Grange was obtained from USGS at http://waterdata.usgs.gov/ca/nwis/dv/?site_no=11265000\&agency_cd=USGS. Provisional daily average flow for the Tuolumne River at Modesto was obtained from the USGS at http://waterdata.usgs.gov/ca/nwis/dv/?site no=11290000\&agency_cd=USGS. The Modesto flow station is below Dry Creek, the largest seasonal tributary entering the river downstream of La Grange Dam. As a result, that site includes flow associated with major winter runoff events. Velocity of water entering the traps was measured using two methods. First, the water velocity entering the traps was measured daily with a Global Flow Probe (Global Water, Fair Oaks, CA). Second, an average daily trap rotation speed was calculated for each trap, by recording the time (in seconds) for three continuous revolutions of the cone, once before and once after the morning trap cleaning. The average of the two times was considered the average daily trap rotation speed.

## River Temperature, Relative Turbidity and Dissolved Oxygen

Instantaneous water temperature was measured daily with a mercury thermometer at the trap site. Data were also available from hourly recording thermographs maintained by the Districts at both trapping sites. To measure daily instantaneous turbidity, a water sample was collected each morning and later tested at the field station with a LaMotte turbidity meter (Model 2020e, LaMotte Company, Chestertown, MD). Turbidity was recorded in nephelometric turbidity units (NTU). Instantaneous dissolved oxygen was measured during trap checks with an ExStik ${ }^{\circledR}$ II D600 Dissolved Oxygen Meter (Extech Instruments Corporation, Waltham, MA) at the trapping sites and recorded in milligrams per liter ( $\mathrm{mg} / \mathrm{L}$ ).

## Estimating Trap Efficiency and Chinook Salmon Abundance

The estimated daily number of fish passing each site was generated by either expanding the catch data by the average estimated trap efficiency for the lifestage captured (Waterford) or by a trap efficiency predictor equation (Grayson).

There is a limited trap efficiency dataset for Waterford because sampling has only been conducted since 2006, and the data are currently inadequate for developing regression relationships between trap efficiency and explanatory variables such as river flow, fish size, or turbidity. In the future, when more tests have been conducted, a multiple regression may be developed similar to the one described below for the Grayson trap. In the interim, an estimate of salmon relative abundance for the sampling season was calculated by expanding the daily number of fish by the average observed trap efficiency for each lifestage using the best available data. Trap efficiency releases were only conducted for the fry lifestage in 2010 due to insufficient catch during the parr/smolt outmigration period. In some situations hatchery origin fish have also been used for trap efficiency tests, however, fish from the Merced River Hatchery were not available during 2010.

Salmon fry abundance estimates were generated based on trap efficiency tests conducted in 2010 at Waterford. Since no efficiency estimates were available for parr/smolt in 2010, the abundance of parr/smolt at Waterford was calculated as follows:

1. Abundance estimates during flows less than $1,000 \mathrm{cfs}$ were calculated using all results from tests conducted during 2007 with parr/smolt at Waterford under similar flows.
2. Abundance estimates during flows greater than $1,000 \mathrm{cfs}$ were calculated using all results from tests conducted at the $7 / 11$ (RM 38) and Deardorff (RM 35.5) sites under similar flow conditions during 1998-2000 using fish approximately $60-95 \mathrm{~mm}$ (Stillwater Sciences 2001). Since these estimates were taken from different (but comparable) locations, a range of parr/smolt abundances were calculated to account for the uncertainty in trap efficiencies at Waterford during higher flows (i.e., greater than 1,000cfs).

At Grayson, daily trap efficiencies were estimated based on a multiple regression equation developed using flow and trap efficiency data collected from 1999 through 2008. Specifically, average daily river flow at Modesto, average fish size at release, and natural log transformed proportions of fish recovered from each release event were used to develop the following trap efficiency predictor equation (adjusted $\mathrm{R}^{2}=0.64$ ):

Daily Predicted Trap Efficiency $=\operatorname{EXP}(-0.29176+(-0.00042 *$ Flow at MOD $)+(-0.03410 *$ Fish size $))$
where Flow at MOD= daily average river flow (cfs) at Modesto
Fish size $=$ daily average fork length (mm) of fish captured at Grayson

These daily predicted trap efficiencies (DPTE) were then applied to the daily catch (DC) to estimate daily passage as follows:

Estimated Daily Passage $=$ DC/DPTE

## RESULTS AND DISCUSSION

## Chinook Salmon

## Number of Unmarked Chinook Salmon Captured

Juvenile salmon sampled in the 2010 RST operation were the progeny of an estimated 282 salmon ( 87 females) that spawned in the fall of 2009 (Cuthbert et al. 2010). The fall-run juvenile salmon outmigration in the San Joaquin Basin typically occurs during the winter and spring, extending mainly from January through May. The outmigration consists largely of fry in winter that are typically less than 50 mm fork length, and smolts in spring which are typically greater than 69 mm fork length. There are also some larger fish that migrate mostly in winter and some fry observed in late spring, which may be from salmon with different spawn timing than fall-run.

During 2010, catches of juvenile Chinook salmon at Waterford were highest in early to midMarch and primarily consisted of fry ( $<50 \mathrm{~mm}$; Figure 5). Daily salmon catch peaked on January 22 (mainly fry $<50 \mathrm{~mm}$ ) following several days of rain, which began on January 18. Daily catches of juvenile salmon at Waterford between January 5 and June 11 ranged from zero to 128 fish, with a total catch of 2,281 salmon (Figure 3).

At Grayson, catches of juvenile salmon in 2010 were highest in late January and May during the fry and smolt outmigration periods, respectively. Daily catches of juvenile salmon at Grayson between January 6 and June 17 ranged from zero to six fish, with a total catch of 52 salmon (Figure 4). The total numbers captured by lifestage at each site are presented in Table 2.
Table 2. Catch by lifestage at Waterford and Grayson, 2010.

|  | Fry $(<50 \mathrm{~mm})$ | Parr $(50-69 \mathrm{~mm})$ | Smolt $(\geq 70 \mathrm{~mm})$ |
| :--- | :---: | :---: | :---: |
| Waterford | 1,241 | 69 | 971 |
| Grayson | 13 | 0 | 39 |

Sampling at Waterford was considered comprehensive and covered January through May each year the trap was sampled. However, in 2006 the sampling was initiated a few weeks later than usual and there was an extended non-sampling period (April 12-21) due to high flows; therefore, outmigration was not fully sampled during the 2006 season. In 2010, the total annual catch of juvenile salmon at Waterford was approximately one-third less than the three previous years (i.e., 2007-2009) and only $25 \%$ of the number of Chinook captured in 2006, despite the abbreviated sampling during that year (Table 1; Figure 5). Total annual trap catch at Waterford from 20062010 ranged from a high of 9,106 in 2006 to a low of 2,281 in 2010, and averaged 4,346 juvenile salmon (Figure 5). The variation in catch during 2006 is likely due to environmental conditions,
specifically high flows that averaged approximately $5,300 \mathrm{cfs}$ during the juvenile migration season (i.e., January-May/June) and higher overall abundance. The lower catch in 2010 is likely due to environmental conditions during the smolt outmigration period when flows averaged approximately $2,400 \mathrm{cfs}$ and lower overall abundance. Trap efficiency decreases at higher flows, specifically when flows are higher than approximately $1,000 \mathrm{cfs}$.

Total annual catch of juvenile salmon has varied substantially between years at Grayson/Shiloh (Table 1; Figure 6). This variation is likely due to differences in one or more factors including, the duration and timing of the sampling periods, environmental conditions, and overall fish abundance and survival (Table 1). Sampling periods have varied between years, with sampling initiated as early as January or as late as April and continuing through May/June.

During 1999-2002, 2006, and 2008-2010, sampling at Grayson encompassed the majority of the expected winter/spring outmigration season (i.e., January-May/June) and can be described as comprehensive (Table 1; Figure 6). In contrast, sampling was only conducted during the spring smolt outmigration period (i.e., April-May/June) in 1995-1997 at Shiloh and 2003-2005 and 2007 at Grayson, therefore sampling was incomplete for those years. Sampling during 1998 began in February but was limited to a single trap (Note: two traps were operated in all other years); thus, 1998 sampling covered an intermediate proportion of the entire outmigration period. The proportion of the Jan-May outmigration period monitored each year ranged from $82 \%$ to $98 \%$ during winter/spring sampling years, from $24 \%$ to $44 \%$ during spring-only sampling years, and was $70 \%$ in the intermediate sampling year (Table 1). The proportion of the outmigration period sampled may not be representative of the proportion of the juvenile population migrating during the sample period because the migration pattern is not uniform. Migration timing can be influenced by environmental factors such as flow and turbidity, which are often highly variable during the outmigration period.

Of the winter/spring sampling years, total annual trap catch at Grayson ranged from a high of 19,327 during 1999 to a low of 52 during 2010, and averaged 3,806 juvenile salmon (Figure 6). In all years of spring-only sampling, catches ranged from a high of 1,239 during 2001 to a low of 27 during 2007.


Figure 3. Daily catch of unmarked Chinook salmon at Waterford and river flow at La Grange (LGN) during 2010.


Figure 4. Daily catch of unmarked Chinook salmon at Grayson and river flow at Modesto (MOD) during 2010. Note: Flow at MOD is estimated on Jan. 8-Jan. 15; Jan. 21-Jan. 24; Feb. 11-Mar. 23; Apr. 21-Jun. 14; Jun. 16-Jun. 19; and Jun. 26-30 due to a malfunctioning gage.


Figure 5. Total annual salmon catch at Waterford during 2006-2010.


Figure 6. Total annual salmon catch at Shiloh/Grayson during 1995-2010.

## Trap Efficiency

In 2010, eleven trap efficiency tests were conducted at Waterford using naturally produced salmon fry. Results from these tests ranged from $2.9 \%$ to $20.0 \%$ at flows (La Grange) between 223 cfs and 227 cfs (Table 3; Figure 7). No trap efficiency estimates were obtained during the parr/smolt outmigration period due to insufficient catch in the Waterford trap and the lack of hatchery fish available for releases. Average fork length at release for the trap efficiency test groups in 2010 ranged from 35 mm to 37 mm ( $\mathrm{n}=11$, Table 3). As mentioned previously, since flows were higher in 2010 than in recent years and there were no comparable trap efficiency data available for the Waterford trap at flows greater than $1,000 \mathrm{cfs}$, data were used from past test results conducted under similar flow conditions at the $7 / 11$ (RM 38) and Deardorff (RM 35.5) traps (Table 3; Stillwater Sciences 2001). Consequently, in order to account for the uncertainty in trap efficiencies at higher flows at Waterford, a range of parr/smolt abundances were calculated from data collected in previous years during periods flows greater than 1,000 cfs.

Thus, salmon abundance estimate calculations at Waterford in 2010 were based on (Table 3):
Fry:

- trap efficiency tests conducted in 2010 at Waterford $=11.1 \%$

Parr/Smolt:

- trap efficiency tests conducted in 2007 at Waterford at flows $<1,000 \mathrm{cfs}=5.3 \%$
- trap efficiency tests conducted in 1998-2000 at the 7/11 trap (RM 38; 1998 and 1999) and the Deardorff trap (RM 35.5; 2000) at flows $>1,000 \mathrm{cfs}=2.0-5.6 \%$

At Grayson, observed trap efficiency estimates from 1999-2008 ranged from zero to $21.2 \%$ at flows (Modesto) ranging between 280 cfs and $7,942 \mathrm{cfs}$ (Table 4; Figure 8). No trap efficiency estimates were obtained at Grayson during 2010 due to insufficient catch in the traps and the lack of hatchery fish available for releases.

Daily predicted trap efficiency, and daily estimated passage at Waterford and Grayson in 2010 are provided in Appendices A and B, respectively.

Table 3. Trap efficiency results used to estimate daily trap efficiencies at Waterford. Note: Only releases for the fry lifestage were conducted in 2010. Results from 2007 were used for predicting daily trap efficiencies during the parr/smolt lifestages at flows less than 1,000 cfs. Historical trap efficiency data from the $7 / 11$ (RM 38) and Deardorff (RM 35.5) traps were used during the parr/smolt lifestages at flows greater than 1,000 cfs.

| Lifestage | $\begin{gathered} \text { Release } \\ \text { Date } \end{gathered}$ | Location | Origin | $\begin{gathered} \text { Adjusted } \\ \# \\ \text { Released } \\ \hline \end{gathered}$ | Number Recaptured | Recaptured | Length at Release (mm) | Length at Recap. (mm) | Flow (cfs) at LGN | Turbidity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fry | 1/21/10 | Waterford | Wild | 110 | 22 | 20.0\% | 35 | 35 | 225 | 33.3 |
|  | 1/22/10 | Waterford <br> Waterford | Wild | 82 | 9 | 11.0\% | 35 | 35 | 225 | 21.2 |
|  | 2/9/10 |  | Wild | 34 | 1 | 2.9\% | 37 | 40 | 225 | 7.99 |
|  | 2/10/10 | Waterford | Wild | 116 | 8 | 6.9\% | 37 | 37 | 225 | 1.16 |
|  | 2/19/10 | Waterford Waterford | Wild | 42 | 3 | 7.1\% | 35 | 32 | 225 | 1.66 |
|  | 2/20/10 |  | Wild | 33 | 1 | 3.0\% | 36 | 35 | 225 | 1.14 |
|  | 2/23/10 | Waterford | Wild | 29 | 2 | 6.9\% | 36 | 37 | 225 | 0.2 |
|  | 3/1/10 | Waterford | Wild | 36 | 5 | 13.9\% | 35 | 36 | 224 | 15.5 |
|  | 3/9/10 | Waterford | Wild | 44 | 8 | 18.2\% | 36 | 36 | 223 | 1.53 |
|  | $3 / 11 / 10$ | Waterford | Wild | 32 | 4 | 12.5\% | 36 | 35 | 227 | 1.68 |
|  | 3/14/10 | Waterford | Wild | 35 | 3 | 8.6\% | 36 | 36 | 224 | 1.99 |
|  |  |  | TOTAL | 593 | 66 | 11.1\% |  |  |  |  |
| Parr/smolt | 3/5/07 | Waterford | Wild | 75 | 3 | 4.0\% | 56.2 | 59.7 | 341 | 0.62 |
|  | 3/29/07 | Waterford | Wild | 48 | 3 | 6.3\% | 60.3 | 57.1 | 337 | 0.65 |
|  | 3/31/07 | Waterford | Wild | 75 | 3 | 4.0\% | 58.4 | 47.3 | 337 | 0.43 |
|  | 4/5/07 | Waterford | Wild | 50 | 2 | 4.0\% | 76.0 | 75.0 | 337 | 0.64 |
|  | 4/11/07 | Waterford | Wild | 63 | 6 | 9.5\% | 80.6 | 80.2 | 343 | 1.07 |
|  | 4/24/07 | Waterford | Wild | 63 | 3 | 4.8\% | 81.9 | 80.3 | 869 | 0.82 |
|  | 4/26/07 | Waterford | Wild | 171 | 9 | 5.3\% | 80.2 | 79.1 | 646 | 0.88 |
|  | 3/5/07 | Waterford | Wild | 75 | 3 | 4.0\% | 56.2 | 59.7 | 341 | 0.62 |
|  |  |  | TOTAL | 545 | 29 | 5.3\% |  |  |  |  |
| Parr/smolt | 4/26/98 | 7-Eleven | Hatchery | 1504 | 54 | 3.6\% | 79.9 | - | 4051 | 3.5 |
|  | 5/5/98 | 7-Eleven | Hatchery | 4408 | 184 | 4.2\% | 88.1 | - | 2300 | 2.45 |
|  | 5/11/98 | 7-Eleven | Hatchery | 1560 | 88 | 5.6\% | 88.2 | - | 3244 | 2.3 |
|  | 5/20/98 | 7-Eleven | Hatchery | 877 | 21 | 2.4\% | 92.6 | - | 4768 | 1.95 |
|  | 4/10/99 | 7-Eleven | Hatchery | 295 | 6 | 2.0\% | 61.3 | - | 2721 | 1.3 |
|  | 4/18/99 | 7-Eleven | Hatchery | 2401 | 113 | 4.7\% | 70.8 | - | 2027 | 1.1 |
|  | 4/30/99 | 7-Eleven | Hatchery | 912 | 33 | 3.6\% | 78.3 | - | 3018 | 2.3 |
|  | 4/27/00 | Deardorff | Hatchery | 1003 | 41 | 4.1\% | np | - | 1275 | np |
|  | 5/4/00 | Deardorff | Hatchery | 1000 | 24 | 2.4\% | np | - | 2368 | np |
|  |  |  |  |  | Minimum TE | 2.0\% |  |  |  |  |
|  |  |  |  |  | Maximum TE | 5.6\% |  |  |  |  |

np=not provided

Table 4. Trap efficiency results from 1999-2008 used to derive the regression equation for predicting daily trap efficiencies at Grayson.

| Release <br> Date | Origin | Mark | $\begin{gathered} \text { Adjusted } \\ \# \\ \text { Released } \\ \hline \hline \end{gathered}$ | Number <br> Recaptured | \% <br> Recaptured | Length at Release (mm) | Length at Recap. (mm) | $\begin{gathered} \text { Flow } \\ \text { (cfs) } \\ \text { at } \\ \text { MOD } \\ \hline \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11-Mar-99 | Hatchery | Anal fin blue | 1946 | 28 | 1.4\% | 54 | 53 | 4620 |
| 24-Mar-99 | Hatchery | Bottom caudal blue, ad-clip | 1938 | 67 | 3.5\% | 61 | 61 | 3130 |
| 31-Mar-99 | Hatchery | Top caudal blue, ad-clip | 1885 | 73 | 3.9\% | 65 | 64 | 2250 |
| 7-Apr-99 | Hatchery | Bottom caudal blue, ad-clip | 1949 | 50 | 2.6\% | 68 | 68 | 2280 |
| 14-Apr-99 | Hatchery | Anal fin blue, adclip | 1953 | 34 | 1.7\% | 73 | 72 | 2000 |
| 20-Apr-99 | Hatchery | Top caudal blue, ad-clip | 2007 | 45 | 2.2\% | 73 | 75 | 1800 |
| 29-Apr-99 | Hatchery | Bottom caudal blue, ad-clip | 1959 | 14 | 0.7\% | 79 | 80 | 3220 |
| 4-May-99 | Hatchery | Anal fin blue, adclip | 2008 | 18 | 0.9\% | 83 | 82 | 3030 |
| 18-May-99 | Hatchery | Top caudal blue, ad-clip | 2001 | 29 | 1.4\% | 86 | 84 | 677 |
| 26-May-99 | Hatchery | Bottom caudal blue, ad-clip | 1984 | 75 | 3.8\% | 96 | 92 | 518 |
| 1-Mar-00 | Hatchery | Top caudal blue | 1964 | 30 | 1.5\% | 56 | 53 | 4690 |
| 16-Mar-00 | Hatchery | Bottom caudal blue | 1548 | 22 | 1.4\% | 56 | 56 | 5980 |
| 23-Mar-00 | Hatchery | Anal fin blue | 1913 | 55 | 2.9\% | 59 | 60 | 3190 |
| 30-Mar-00 | Hatchery | Top caudal blue | 1942 | 60 | 3.1\% | 62 | 63 | 2820 |
| 29-Apr-00 | Hatchery | Top caudal blue, ad-clip | 1931 | 22 | 1.1\% | 81 | 82 | 1470 |
| 6-May-00 | Hatchery | Bottom caudal blue, ad-clip | 1987 | 41 | 2.1\% | 85 | 85 | 2430 |
| 24-May-00 | Hatchery | Top caudal blue, ad-clip | 2010 | 24 | 1.2\% | 85 | 85 | 1010 |
| 18-Jan-01 | Hatchery | Top caudal blue | 1810 | 120 | 6.6\% | 37 | np | 487 |
| 8-Feb-01 | Hatchery | Bottom caudal blue | 1980 | 276 | 13.9\% | 47 | np | 434 |
| 1-Mar-01 | Hatchery | Top caudal yellow | 2017 | 57 | 2.8\% | 41 | np | 2130 |
| 14-Mar-01 | Hatchery | Bottom caudal yellow | 1487 | 75 | 5.0\% | 46 | np | 703 |
| 21-Mar-01 | Hatchery | Bottom caudal blue, Dorsal fin blue, Top caudal yellow | 3025 | 207 | 6.8\% | 61 | np | 519 |
| 28-Mar-01 | Hatchery | Anal fin blue | 1954 | 219 | 11.2\% | 51 | np | 515 |
| 11-Apr-01 | Hatchery | Bottom caudal yellow, ad-clip | 2021 | 141 | 7.0\% | 66 | np | 535 |
| 18-Apr-01 | Hatchery | Top caudal blue, ad-clip | 2060 | 95 | 4.6\% | 68 | np | 483 |
| 25-Apr-01 | Hatchery | Ad-clip dorsal fin yellow, Bottom caudal blue, Dorsal fin blue | 1515 | 34 | 2.2\% | 71 | np | 753 |
| 2-May-01 | Hatchery | Anal fin blue, ad- | 3053 | 163 | 5.3\% | 72 | np | 1460 |


| Release Date | Origin | Mark | Adjusted \# <br> Released | Number <br> Recaptured | \% <br> Recaptured | Length at Release (mm) | Length at Recap. (mm) | Flow <br> (cfs) at MOD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| clip |  |  |  |  |  |  |  |  |
| 9-May-01 | Hatchery | Bottom caudal yellow, ad-clip | 3002 | 147 | 4.9\% | 75 | np | 1160 |
| 16-May-01 | Hatchery | Top caudal blue, ad-clip | 2942 | 93 | 3.2\% | 76 | np | 1020 |
| 20-Feb-02 | Hatchery | Bottom caudal red | 2094 | 444 | 21.2\% | 57 | np | 265 |
| 6-Mar-02 | Hatchery | Anal fin red | 2331 | 316 | 13.6\% | 68 | np | 278 |
| 13-Mar-02 | Hatchery | Top caudal red | 2042 | 324 | 15.9\% | 65 | np | 300 |
| 20-Mar-02 | Hatchery | Dorsal fin red | 2105 | 242 | 11.5\% | 68 | np | 328 |
| 27-Mar-02 | Hatchery | Bottom caudal red | 2121 | 147 | 6.9\% | 68 | np | 314 |
| 3-Apr-02 | Hatchery | Anal fin red, adclip | 1962 | 130 | 6.6\% | 76 | np | 312 |
| 9-Apr-02 | Hatchery | Top caudal red, adclip | 1995 | 56 | 2.8\% | 79 | np | 319 |
| 17-Apr-02 | Hatchery | Dorsal fin red, adclip | 2048 | 40 | 2.0\% | 84 | np | 889 |
| 25-Apr-02 | Hatchery | Bottom caudal red, ad-clip | 2001 | 22 | 1.1\% | 86 | np | 1210 |
| 1-May-02 | Hatchery | Anal fin red, adclip | 2033 | 14 | 0.7\% | 89 | np | 1250 |
| 8-May-02 | Hatchery | Dorsal fin red, adclip | 2021 | 31 | 1.5\% | 95 | np | 798 |
| 15-May-02 | Hatchery | Top caudal red, adclip | 2047 | 26 | 1.3\% | 97 | np | 653 |
| 22-May-02 | Hatchery | Bottom caudal red, ad-clip | 2043 | 10 | 0.5\% | 94 | np | 403 |
| 10-Apr-03 | Hatchery | Top caudal green | 1956 | 138 | 7.1\% | 77 | np | 297 |
| 17-Apr-03 | Hatchery | Bottom caudal green | 2047 | 65 | 3.2\% | 77 | np | 1350 |
| 24-Apr-03 | Hatchery | Anal fin green | 1979 | 31 | 1.6\% | 88 | np | 1210 |
| 1-May-03 | Hatchery | Dorsal fin green | 2044 | 113 | 5.5\% | 96 | np | 685 |
| 8-May-03 | Hatchery | Top caudal green | 2078 | 206 | 9.9\% | 83 | np | 726 |
| 15-May-03 | Hatchery | Bottom caudal green | 1996 | 125 | 6.3\% | 83 | np | 559 |
| 20-May-03 | Hatchery | Anal fin green | 1989 | 60 | 3.0\% | 89 | np | 317 |
| 28-May-03 | Hatchery | Dorsal fin green | 1950 | 125 | 6.4\% | 94 | np | 685 |
| 13-Apr-04 | Hatchery | Dorsal fin green | 1992 | 84 | 4.2\% | 79 | 74 | 1140 |
| 20-Apr-04 | Hatchery | Anal fin green | 1980 | 48 | 2.4\% | 81 | 79 | 1660 |
| 27-Apr-04 | Hatchery | Top caudal green | 1941 | 118 | 6.1\% | 86 | 85 | 826 |
| 4-May-04 | Hatchery | Bottom caudal green | 2008 | 50 | 2.5\% | 90 | 87 | 789 |
| 11-May-04 | Hatchery | Anal fin green | 1972 | 104 | 5.3\% | 86 | 79 | 815 |
| 18-May-04 | Hatchery | Dorsal fin green | 1996 | 178 | 8.9\% | 88 | 77 | 446 |
| 25-May-04 | Hatchery | Top caudal green | 2013 | 59 | 2.9\% | 92 | 90 | 337 |
| 9-Feb-06 | Wild | Caudal fin pink | 37 | 5 | 13.5\% | 34.6 | 35.2 | 3393 |
| 11-Feb-06 | Wild | Caudal fin pink | 26 | 4 | 15.4\% | 34.9 | 37.3 | 3437 |
| 12-Feb-06 | Wild | Caudal fin pink | 23 | 1 | 4.3\% | 36.1 | 37.0 | 3416 |
| 13-Feb-06 | Wild | Caudal fin pink | 28 | 1 | 3.6\% | 35.5 | 33.0 | 3418 |


| Release Date | Origin | Mark | Adjusted \# <br> Released | Number <br> Recaptured | \% Recaptured | Length at Release (mm) | Length at Recap. (mm) | $\begin{gathered} \text { Flow } \\ \text { (cfs) } \\ \text { at } \\ \text { MOD } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3-Mar-06 | Wild | Caudal fin green | 89 | 4 | 4.5\% | 34.8 | 35.3 | 4261 |
| 5-May-06 | Hatchery | Caudal fin yellow | 949 | 4 | 0.4\% | 73.2 | 74.3 | 7942 |
| 12-May-06 | Hatchery | Caudal fin yellow | 1,286 | 5 | 0.4\% | 81.8 | 76.6 | 7534 |
| 25-May-06 | Hatchery | Top caudal yellow | 1,532 | 2 | 0.1\% | 83.7 | 69.5 | 6537 |
| 1-Jun-06 | Hatchery | Top caudal yellow | 1,694 | 0 | 0.0\% | 91.9 | - |  |
| 14-Jun-06 | Hatchery | Top caudal yellow | 1,507 | 2 | 0.1\% | 85.4 | 83.0 | 4864 |
| 3/1/08 | Wild | Caudal fin yellow | 73 | 5 | 6.9\% | 38 | 38 | 342 |
| 4/15/08 | Hatchery | Caudal fin orange | 1131 | 109 | 9.6\% | 77 | 76 | 300 |
| 4/25/08 | Hatchery | Dorsal fin orange | 1005 | 17 | 1.7\% | 86 | 84 | 1290 |
| 5/7/08 | Hatchery | Anal fin orange | 526 | 8 | 1.5\% | 96 | 96 | 1310 |
| 5/14/08 | Hatchery | Caudal fin orange | 519 | 13 | 2.5\% | 93 | 91 | 941 |
| 5/21/08 | Hatchery | Lower caudal orange, anal fin orange | 515 | 19 | 3.7\% | 92 | 91 | 678 |

$\mathrm{np}=$ not provided


Figure 7. Trap efficiency estimates at Waterford relative to river flow at La Grange (LGN) during 2010.


Figure 8. Trap efficiency observations at Grayson relative to river flow at Modesto (MOD), 1999-2008.

## Estimated Chinook Salmon Abundance

As mentioned previously, in order to account for the uncertainty in trap efficiencies at Waterford during periods of parr/smolt outmigration (April 11-June 10), a range of abundances were calculated using trap efficiency data from previous study years. In this section, for ease of explanation, the population estimate was calculated using the median historical efficiency with the range in parentheses (Figure 9). Based on calculated daily passage estimates, an estimated 42,600 (29,300-55,900) Chinook salmon passed Waterford during 2010, of which 70.7\% ( $58.2 \%-77.2 \%$ ) were smolts (Table 5). In comparison, the percentage of fish passing Waterford as smolts was $51.7 \%$ in $2009,34.3 \%$ in 2008 , and $51.1 \%$ in 2007. In 2006, sampling efforts were affected by high spring flows resulting in passage estimates that were likely underestimated (particularly for smolts). Similar to the pattern observed for catch in 2010, and in previous years, it is estimated that a majority of the salmon passing Waterford in 2010 prior to mid-March were fry and passage was then dominated by smolts from late-March through May (Table 5; Figure 10). Daily estimated salmon passage at Waterford ranged from zero to $1,730(\mathrm{max}$. range $=$ 1,153-2,550). The peak in daily passage for fry occurred on January 21 and smolt passage peaked on May 15 (Figure 11).

During the 2009-2010 spawning season, approximately 490 (337-643) juveniles were produced per female spawner relative to the estimated $87^{3}$ female spawners; compared to 175 juveniles in 2009, 311 in 2008, and 205 in 2007 (Table 6). Beginning in 2010 the number of female spawners was estimated using counts from a Vaki Riverwatcher used in conjunction with a resistance board weir, rather than using the traditional carcass surveys. This estimate of spawner abundance is believed to be more accurate than carcass surveys, especially during years of lower abundance (Cuthbert et al. 2010).


Figure 9. Daily estimated abundance of Chinook salmon at Waterford based on trap efficiencies conducted in 2010 at Waterford during the fry period, and trap efficiencies conducted in 2007 at Waterford (at flows < $1,000 \mathrm{cfs}$ ) and at the $7 / 11$ and Deardorff traps in 1998-2000 (at flows $>1,000 \mathrm{cfs}$ ) for the parr/smolt period. A range of abundances were calculated for the parr/smolt period and the median and range are presented in this graph.

[^1]Table 5. Estimated passage by lifestage at Waterford and Grayson during 1995-2010. *For 2010 the estimated passage values used in this table for Waterford are the median values of the estimated ranges.

|  |  | Sampling Period | Fry |  | Parr |  | Smolts |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Number | \% | Number | \% | Number | \% |  |
| Waterford | 2006 |  | w/s | 163,805 | 54.0\% | 6,550 | 2.2\% | 133,127 | 43.9\% | 303,482 |
|  | 2007 | w/s | 20,633 | 35.7\% | 7,614 | 13.2\% | 29,554 | 51.1\% | 57,801 |
|  | 2008 | w/s | 15,259 | 61.3\% | 1,102 | 4.4\% | 8,534 | 34.3\% | 24,894 |
|  | 2009 | w/s | 13,399 | 36.0\% | 4,562 | 12.3\% | 19,213 | 51.7\% | 37,174 |
|  | 2010* | w/s | 10,735 | 25.9\% | 1,030 | 2.5\% | 29,728 | 71.6\% | 41,493 |
| Grayson | 1995 | spring | - | - | - | - | 22,067 | 100\% | 22,067 |
|  | 1996 | spring | - | - | - | - | 16,533 | 100\% | 16,533 |
|  | 1997 | spring | - | - | - | - | 1,280 | 100\% | 1,280 |
|  | 1998 | intermediate | 1,196,625 | 74.1\% | 327,422 | 20.3\% | 91,626 | 5.7\% | 1,615,673 |
|  | 1999 | w/s | 716,858 | 94.9\% | 8,452 | 1.1\% | 30,293 | 4.0\% | 755,604 |
|  | 2000 | w/s | 48,338 | 48.4\% | 8,431 | 8.4\% | 43,028 | 43.1\% | 99,797 |
|  | 2001 | w/s | 59,153 | 59.4\% | 12,480 | 12.5\% | 27,951 | 28.1\% | 99,584 |
|  | 2002 | w/s | 75 | 0.5\% | 696 | 4.9\% | 13,364 | 94.5\% | 14,135 |
|  | 2003 | spring | 27 | 0.3\% | 0 | 0\% | 9,064 | 99.7\% | 9,091 |
|  | 2004 | spring | 155 | 0.9\% | 732 | 4.1\% | 16,884 | 95.0\% | 17,771 |
|  | 2005 | spring | - | - | 416 | 0.2\% | 255,294 | 99.8\% | 255,710 |
|  | 2006 | w/s | 62,901 | 87.8\% | 1,536 | 2.1\% | 7,233 | 10.1\% | 71,670 |
|  | 2007 | spring | - | - | - | - | 937 | 100\% | 937 |
|  | 2008 | w/s | 917 | 27.9\% | 14 | 0.4\% | 2,352 | 71.6\% | 3,283 |
|  | 2009 | w/s | 145 | 3.1\% | 200 | 4.3\% | 4,332 | 92.6\% | 4,677 |
|  | 2010 | w/s | 183 | 4.1\% | - | - | 4260 | 95.9\% | 4,443 |

Table 6. Estimated number of juvenile salmon produced per female spawner, 2006-2010.

|  | Females | Juveniles/female spawner |
| :---: | :---: | :---: |
| $\mathbf{2 0 0 6}$ | 478 | 635 |
| $\mathbf{2 0 0 7}$ | 282 | 205 |
| $\mathbf{2 0 0 8}$ | 80 | 311 |
| $\mathbf{2 0 0 9}$ | 212 | 175 |
| $\mathbf{2 0 1 0}$ | 87 | 337 to 643 |

An estimated 4,443 unmarked Chinook salmon passed Grayson during 2010 and $95.9 \%$ of these were smolts (Table 5). Daily estimated passage at Grayson ranged from 0 to 718 salmon. Peak daily passage for smolts occurred on May 20 (Figure 12). During comparable seasonal sampling in previous years at Grayson (i.e., winter/spring sampling in 1999-2002, 2006, and 2008-2009), total estimated passage ranged from a high of 755,604 in 1999 to a low of 3,283 in 2008 (Table 1; Figure 14); the proportion of passage as smolts was the highest in $2010(95.9 \%)$ and the lowest in $1999(4.0 \%)$. In spring-only sampling years at Grayson/Shiloh (i.e., 2003-2005 and 2007 at Grayson and 1995-1997 at Shiloh), total estimated passage ranged from a high of

255,710 in 2005 to a low of 937 in 2007 (Table 1; Figure 14); the vast majority of migrants in all spring-only years were smolts ( $>95.0 \%$; Table 5). Among all years, estimated passage was the highest during 1998 (Table 1; Figure 14), when sampling effort was intermediate and the proportion passing as smolts was low ( $5.7 \%$ ). However, the 1998 passage estimate of $1,615,673$ fish may be inflated and the proportion passing as smolts may be underestimated because no trap efficiency tests were conducted with fry.


Figure 10. Juvenile salmon passage by lifestage at Waterford during 2010.


Figure 11. Daily estimated passage of unmarked Chinook salmon at Waterford and river flow at La Grange (LGN) during 2010.

NOTE: From April 11-June 10 the graph depicts median daily passage estimates - See Figure 9.


Figure 12. Daily estimated passage of unmarked Chinook salmon at Grayson and river flow at Modesto (MOD) during 2010.


Figure 13. Total estimated Chinook passage at Waterford (2006-2010).
*Note that 2010 estimates are based upon the median of historical trap efficiency. ( ${ }^{*}$ range $=29,300-55,900$ ).


Figure 14. Total estimated Chinook passage at Shiloh and Grayson during 1995-2010.

## Estimated Chinook Salmon Abundance and Environmental Factors

Peaks in salmon fry passage at Waterford in the winter were generally associated with peaks in turbidity conditions. River releases were relatively stable during this period (January-midMarch) and ranged from 222 cfs to 259 cfs. River flow near Grayson during the winter period was more variable as a result of storm run-off, particularly from Dry Creek entering at Modesto, and ranged from 279 cfs to 1,423 cfs. During the spring (mid-March through June), higher pulse flows produced several peaks in flow at both traps (Figure 11 and Figure 12).

During 2010 monitoring, daily average water temperatures ranged from $49.6^{\circ} \mathrm{F}$ to $60.4^{\circ} \mathrm{F}$ at the Waterford trap (Figure 15) and from $47.7^{\circ} \mathrm{F}$ to $64.2^{\circ} \mathrm{F}$ at the Grayson traps (Figure 16). Water temperatures generally increased through the outmigration season, with two peaks in mid- and late-March. There were no obvious correlations between trends in passage and water temperature during 2010.


Figure 15. Daily estimated passage of unmarked Chinook salmon and daily average water temperature at the Waterford trap during 2010. NOTE: From April 11-June 10 the graph depicts median daily passage estimates - See Figure 9.


Figure 16. Daily estimated passage of unmarked Chinook salmon and daily average water temperature at the Grayson trap during 2010.

Background turbidity was generally less than 4 NTU at Waterford (Figure 17) and less than 6 NTU at Grayson (Figure 18) during the 2010 monitoring period. During several storm events (Figure 19), spikes in turbidity were observed ranging as high as 33 NTU at Waterford, and ranging as high as 81 NTU at Grayson. Peaks in passage on January $21^{\text {st }}$ and February $9^{\text {th }}$ at Waterford coincided with periods of elevated turbidity.

The ratio of estimated total passage at Grayson relative to the estimated total passage at Waterford provides an index of survival through the river between the sites ( 24.6 miles) during years when the majority of the outmigration period is sampled. The survival index for 2010, $10.4 \%$, should be interpreted with caution, since there is substantial uncertainty in the total passage estimate for Waterford. This value was calculated using the median estimated total passage for Waterford, and ranges from $7.9 \%$ to $15.2 \%$ based upon the range of estimated passages. Survival indices of $23.6 \%, 13.2 \%$ and $11.9 \%$ were calculated for 2006, 2008 and 2009, respectively. A survival index was not calculated for 2007 because sampling did not begin until mid-March.


Figure 17. Daily estimated passage of unmarked Chinook salmon and instantaneous turbidity at Waterford during 2010. NOTE: From April 11-June 10 the graph depicts median daily passage estimates - See Figure 9.


Figure 18. Daily estimated passage of unmarked Chinook salmon and instantaneous turbidity at Grayson during 2010.


Figure 19. Daily rainfall measured at Don Pedro Reservoir and instantaneous turbidity at Waterford during 2010.

Chinook Salmon Length at Migration

Individual fork lengths of unmarked salmon captured at Waterford during 2010 ranged from 30 mm to 140 mm (Figure 20), and daily average length gradually increased from approximately 36 mm to over 90 mm during the course of the sampling period (Figure 21 and Figure 22). Most of the juvenile salmon passing Waterford during 2010 were smolts measuring $80-109 \mathrm{~mm}$, followed by fry measuring $30-39 \mathrm{~mm}$ (Figure 23). In total, it is estimated that 11,471 fry ( $<50 \mathrm{~mm}$ ), 1,023 parr ( $50-69 \mathrm{~mm}$ ), and 30,124 smolts ( $\geq 70 \mathrm{~mm}$ ) passed Waterford during 2010 (Table 5). There were also a number of fish captured throughout the season that were atypical sizes for fall-run Chinook salmon production (Figure 20). For instance, during January through mid-March there were 47 fish much larger than the majority of juvenile salmon captured during that period (average size of larger fish was over 60 mm larger than majority of juvenile salmon captured) and 10 fish in the spring that were much smaller than other juvenile salmon captured during that period ( $34-38 \mathrm{~mm}$ versus $45-125 \mathrm{~mm}$ ).

Individual fork lengths of unmarked Chinook salmon captured at Grayson during 2010 ranged from 31 mm to 139 mm (Figure 24), and daily average length ranged between 31 mm and 110 mm during the sampling period (Figure 25 and Figure 26). Nearly $78 \%$ of the salmon estimated to have passed Grayson during 2010 were smolts measuring 90-109 mm (Figure 26). In total, it is estimated that 183 fry ( $<50 \mathrm{~mm}$ ), zero parr ( $50-69 \mathrm{~mm}$ ), and 4,260 smolts ( $\geq 70 \mathrm{~mm}$ ) passed Grayson during 2010 (Table 5). Similar to Waterford, three much larger sized Chinook were also captured during January through early March (Figure 24).


Figure 20. Individual fork lengths of juvenile salmon captured at Waterford during 2010.


Figure 21. Daily minimum, average, and maximum fork lengths of unmarked Chinook salmon captured at Waterford during 2010.


Figure 22. Average fork length of juvenile Chinook salmon captured at Waterford and Grayson by Julian week during 2010.


Figure 23. Estimated Chinook passage by 10 mm fork length intervals at Waterford during 2010.

Figure 24. Individual fork lengths of juvenile salmon captured at Grayson during 2010.


Figure 25. Daily minimum, average, and maximum fork lengths of unmarked Chinook salmon captured at Grayson during 2010.


Figure 26. Estimated Chinook passage by 10 mm fork length intervals at Grayson during 2010.

## Chinook Salmon Condition at Migration

Juveniles captured at both Waterford and Grayson during 2010 were generally healthy with no apparent signs of disease or stress. The relationship between individual salmon fork length and weight showed a very similar trend between Waterford and Grayson (Figure 27).


Figure 27. Fork length and weight of individual juvenile Chinook salmon measured at Waterford and Grayson during 2010.

## Oncorhynchus mykiss (Rainbow Trout/Steelhead)

No $O$. mykiss were captured at Waterford or Grayson in 2010. Total annual O. mykiss catch at the Grayson and Waterford traps between 2007 and 2010 ranged from zero to eleven (Figure 28).


Figure 28. Date, size and location of O. mykiss captured at Waterford (W) and Grayson (G).

## Other Fish Species Captured

A total of 4,467 non-salmonids representing at least 22 species (5 native, 17 introduced) were captured during operation of the Waterford and Grayson traps in 2010 (Table 7; Appendices C and D). Native species comprised $56.7 \%$ of the total non-salmonid catch, consisting primarily of lamprey ( $n=1,952$ ). Most species captured at Waterford were also recorded at Grayson. Additional species only recorded at Waterford were green sunfish and tule perch. Species only recorded at Grayson were bigscale logperch, black bullhead, brown bullhead, black crappie, goldfish, and inland silverside. Lampreys captured in the traps were primarily ammocoetes and were not identified to species or measured. No adult lamprey were captured at either trapping location.

Table 7. Non-salmonid species captured at Waterford and Grayson during 2010. Native species are indicated in bold.

| Common Name | Scientific Name | Waterford |  |  |  | Grayson |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total Catch | $\begin{gathered} \text { Minimum } \\ \text { Length } \\ (\mathrm{mm}) \\ \hline \hline \end{gathered}$ |  | $\begin{gathered} \text { Maximum } \\ \text { Length } \\ (\mathrm{mm}) \\ \hline \hline \end{gathered}$ | Total Catch | $\begin{gathered} \text { Minimum } \\ \text { Length } \\ (\mathrm{mm}) \\ \hline \hline \end{gathered}$ | Average Length (mm) | $\begin{gathered} \text { Maximum } \\ \text { Length } \\ \text { (mm) } \\ \hline \hline \end{gathered}$ |
| Catfish Family |  |  |  |  |  |  |  |  |  |
| Black bullhead | Ameiurus melas | 0 | - | - | - | 1 | 180 | 180 | 180 |
| Brown bullhead | Ameiurus nebulosus | 0 | - | - | - | 20 | 156 | 184 | 206 |
| Channel catfish | Ictalurus punctatus | 57 | 38 | 58 | 80 | 12 | 43 | 64 | 120 |
| White catfish | Ictalurus catus | 367 | 36 | 58 | 160 | 550 | 36 | 57 | 272 |
| Lamprey Family |  |  |  |  |  |  |  |  |  |
| Lamprey - unidentified | Not applicable | 1,916 | - | - | - | 36 | - | - | - |
| Livebearer Family |  |  |  |  |  |  |  |  |  |
| Mosquitofish | Gambusia affinis | 14 | 28 | 32 | 47 | 88 | 46 | 47 | 47 |
| Minnow Family |  |  |  |  |  |  |  |  |  |
| Golden shiner | Notemigonus crysoleucas | 4 | 31 | 40 | 49 | 56 | 35 | 71 | 172 |
| Goldfish | Carassius auratus | 0 | - | - | - | 2 | - | - | - |
| Red shiner | Cyprinella lutrennsis | 1 | 54 | 54 | 54 | 88 | 25 | 57 | 155 |
| Sacramento pikeminnow | Ptychochelius grandis | 401 | 33 | 82 | 169 | 93 | 25 | 80 | 180 |
| Perch Family |  |  |  |  |  |  |  |  |  |
| Bigscale logperch | Percina macrolepida | 0 | - | - | - | 1 | 107 | 107 | 107 |
| Sculpin Family |  |  |  |  |  |  |  |  |  |
| Prickly Sculpin | Cottus asper | 14 | 72 | 85 | 140 | 3 | 90 | 108 | 125 |
| Silverside Family |  |  |  |  |  |  |  |  |  |
| Inland silverside | Menidia beryllina | 0 | - | - | - | 5 | 34 | 54 | 72 |

FISHBIO

| Common Name | Scientific Name | Waterford |  |  |  | Grayson |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total Catch | $\begin{gathered} \text { Minimum } \\ \text { Length } \\ (\mathrm{mm}) \end{gathered}$ | Average <br> Length (mm) | $\begin{gathered} \text { Maximum } \\ \text { Length } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | Total Catch | Minimum Length (mm) | Average <br> Length <br> (mm) | $\begin{aligned} & \text { Maximum } \\ & \text { Length } \\ & (\mathrm{mm}) \\ & \hline \end{aligned}$ |
| Sucker Family |  |  |  |  |  |  |  |  |  |
| Sacramento sucker | Catostomus occidentalis | 50 | 34 | 63 | 430 | 21 | 25 | 46 | 193 |
| Sunfish Family |  |  |  |  |  |  |  |  |  |
| Bluegill | Lepomis macrochirus | 177 | 34 | 66 | 174 | 119 | 23 | 75.4 | 168 |
| Black crappie | Pomoxis annularis | 0 | - | - | - | 7 | 32 | 93.6 | 227 |
| Green sunfish | Lepomis cyanellus | 8 | 64 | 129 | 175 | 0 | - | - | - |
| Largemouth bass | Micropterus salmoides | 17 | 48 | 68 | 90 | 51 | 33 | 112 | 305 |
| Redear sunfish | Lepomis microlophus | 67 | 34 | 87 | 182 | 164 | 30 | 73 | 188 |
| Smallmouth bass | Micropterus dolomieu | 9 | 52 | 79 | 155 | 34 | 64 | 121 | 285 |
| Warmouth | Lepomis gulosus | 12 | 69 | 123 | 194 | 1 | 33 | 33 | 33 |
| Unidentified bass | Not applicable | 0 | - | - | - | 10 | 34 | 43.7 | 67 |
| Surferch Family |  |  |  |  |  |  |  |  |  |
| Tule perch | Hysterocarpus traskii | 1 | 89 | 89 | 89 | 0 | - | - | - |
| Unidentified species | Not applicable | 0 | - | - | - | 2 | - | - | - |
| Total Species Captured $=22$ (17 introduced, 5 native) |  |  |  |  |  |  |  |  |  |
| Total Native Individuals Captured $=2,535$ (2,382 at Waterford, 153 at Grayson) |  |  |  |  |  |  |  |  |  |

## REFERENCES CITED

Blakeman, D. 2004a. 1998 juvenile Chinook salmon capture and production indices using rotaryscrew traps on the lower Tuolumne River. California Department of Fish and Game, Technical report submitted to Tuolumne River Technical Advisory Committee, Turlock, CA.

Blakeman, D. 2004b. 2002 juvenile Chinook salmon capture and production indices using rotary-screw traps on the lower Tuolumne River. California Department of Fish and Game, Technical report submitted to Tuolumne River Technical Advisory Committee, Turlock, CA.

Blakeman, D. 2004c. 2003 juvenile Chinook salmon capture and production indices using rotaryscrew traps on the lower Tuolumne River. California Department of Fish and Game, Technical report submitted to Tuolumne River Technical Advisory Committee, Turlock, CA.

Cuthbert, R., A. Fuller, and S. Snyder. 2010. Fall/Winter Migration Monitoring at the Tuolumne River Weir 2009/2010 Annual Report. FISHBIO Environmental, Oakdale, CAFinal Report submitted to Turlock and Modesto Irrigation Districts. March 2010.

Fuller, A.N. 2005. Outmigrant trapping of juvenile salmonids in the lower Tuolumne River at Grayson 2004. S.P. Cramer \& Associates, Gresham, OR. Final Report submitted to Turlock and Modesto Irrigation Districts.

Fuller, A.N. 2008. Outmigrant trapping of juvenile salmonids in the lower Tuolumne River, 2007. Prepared by FISHBIO Environmental, Chico, California for Turlock Irrigation District and Modesto Irrigation Districts.

Fuller, A.N., M. Simpson, and C. Sonke. 2006. Outmigrant trapping of juvenile salmonids in the lower Tuolumne River at Grayson 2005. S.P. Cramer \& Associates, Gresham, OR. Final Report submitted to Turlock and Modesto Irrigation Districts.

Fuller, A.N., M. Simpson, and C. Sonke. 2007. Outmigrant trapping of juvenile salmonids in the lower Tuolumne River 2006. FISHBIO Environmental, Chico, CA. Final Report submitted to Turlock and Modesto Irrigation Districts.

Palmer, M., and C. Sonke. 2008. Outmigrant trapping of juvenile salmonids in the lower Tuolumne River 2008. FISHBIO Environmental, Chico, CA. Final Report submitted to Turlock and Modesto Irrigation Districts.

Palmer, M., and C. Sonke. 2010. Outmigrant trapping of juvenile salmonids in
the lower Tuolumne River 2009. FISHBIO Environmental, Chico, CA. Final Report submitted to Turlock and Modesto Irrigation Districts.

Heyne, T. and W. Loudermilk. 1997. Rotary screw trap capture of Chinook salmon smolts on the Tuolumne River in 1995 and 1996: Contribution of assessment of survival and production estimates. Federal Energy Regulatory Commission annual report, FERC project \#2299-024.

Heyne, T. and W. Loudermilk. 1998. Rotary screw trap capture of Chinook salmon smolts with survival and production indices for the Tuolumne River in 1997. Federal Energy Regulatory Commission annual report, FERC project \#2299-024.

Stillwater Sciences. 2001. 2000 Tuolumne River smolt survival and upper screw traps report. Report 2000-4 in 2000 Lower Tuolumne River annual report, Project No. 2299. Prepared by Noah Hume, Peter Baker, Anthony Keith and Jennifer Vick of Stillwater Ecosystem, Watershed \& Riverine Sciences, Berkeley, CA and Tim Ford, Turlock and Modesto Irrigation Districts with assistance from S.P. Cramer and Associates. March 2001.

Vasques, J. and K. Kundargi. 2001. 1999-2000 Grayson Screw Trap Report. California Department of Fish and Game Anadromous Fisheries Project, San Joaquin Valley Southern Sierra Region (Region 4). March 2001.

Vasques, J. and K. Kundargi. 2002. 2001 Juvenile Chinook capture and production indices using rotary screw traps on the lower Tuolumne River. California Department of Fish and Game, San Joaquin Valley Southern Sierra Region, Anadromous Fisheries Program.

Vick, J., P. Baker, and T. Ford. 1998. 1998 Lower Tuolumne river Annual Report, Report 98-3, 1998 Tuolumne River Outmigrant Trapping Report. December 1998

Vick, J., A. Keith, and P. Baker. 2000. 1999 Lower Tuolumne River Annual Report, Report 995, 1999 Tuolumne River Upper Rotary Screw Trap Report. March 2000.

Appendix A. Daily Chinook catch, length, and estimated passage at Waterford and environmental data from 2010.

|  | Unmarked Chinook Salmon |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Environmental Conditions |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\frac{\text { Fork Length }}{(\mathrm{mm})}$ |  |  | High Range | Estimated Passage - High |  |  |  | Low Range | Estimated Passage - Low |  |  |  | Median | $\frac{\text { Flow }}{\text { (cfs) }}$ |  |  |  |
| Date | Catch | Min | Avg | Max | Est. Efficiency | Fry | Parr | Smolt | Total | Est. Efficiency | Fry | Parr | Smolt | Total | Passage | La Grange | Velocity (ft/s) | Temp at Trap | Turbidity |
| 1/5/10 | 0 | - | - | - | 0.111 | 0 | 0 | 0 | 0 | 0.111 | 0 | 0 | 0 | 0 | 0 | 255 | 1.8 | 50.3 | 0.32 |
| 1/6/10 | 0 | - | - | - | 0.111 | 0 | 0 | 0 | 0 | 0.111 | 0 | 0 | 0 | 0 | 0 | 254 | 1.7 | 49.6 | 0.96 |
| 1/7/10 | 0 | - | - | - | 0.111 | 0 | 0 | 0 | 0 | 0.111 | 0 | 0 | 0 | 0 | 0 | 244 | 1.8 | 50.0 | 3.96 |
| 1/8/10 | 0 | - | - | - | 0.111 | 0 | 0 | 0 | 0 | 0.111 | 0 | 0 | 0 | 0 | 0 | 228 | 1.9 | 50.7 | 0.43 |
| 1/9/10 | 0 | - | - | - | 0.111 | 0 | 0 | 0 | 0 | 0.111 | 0 | 0 | 0 | 0 | 0 | 231 | 1.7 | 49.6 | 0.41 |
| 1/10/10 | 0 | - | - | - | 0.111 | 0 | 0 | 0 | 0 | 0.111 | 0 | 0 | 0 | 0 | 0 | 225 | 1.9 | 48.5 | 0.43 |
| 1/11/10 | 1 | 35 | 35 | 35 | 0.111 | 7 | 0 | 2 | 9 | 0.111 | 7 | 0 | 2 | 9 | 9 | 227 | 1.5 | 50.1 | 1.51 |
| 1/12/10 | 11 | 31 | 34 | 37 | 0.111 | 80 | 0 | 19 | 99 | 0.111 | 80 | 0 | 19 | 99 | 99 | 225 | 1.7 | 52.5 | 1.36 |
| 1/13/10 | 25 | 32 | 34 | 36 | 0.111 | 182 | 0 | 43 | 225 | 0.111 | 182 | 0 | 43 | 225 | 225 | 224 | 1.8 | 53.4 | 1.22 |
| 1/14/10 | 16 | 33 | 77 | 115 | 0.111 | 116 | 0 | 28 | 144 | 0.111 | 116 | 0 | 28 | 144 | 144 | 224 | 2.2 | 54.5 | 2.79 |
| 1/15/10 | 20 | 35 | 88 | 130 | 0.111 | 159 | 1 | 29 | 189 | 0.111 | 159 | 1 | 29 | 189 | 189 | 226 | 1.7 | 50.7 | 17.30 |
| 1/16/10 | 8 | 31 | 53 | 109 | 0.111 | 61 | 0 | 11 | 72 | 0.111 | 61 | 0 | 11 | 72 | 72 | 226 | 1.5 | 50.5 | 3.24 |
| 1/17/10 | 4 | 31 | 59 | 88 | 0.111 | 30 | 0 | 5 | 36 | 0.111 | 30 | 0 | 5 | 36 | 36 | 226 | 1.7 | 50.9 | 1.52 |
| 1/18/10 | 1 | 39 | 39 | 39 | 0.111 | 8 | 0 | 1 | 9 | 0.111 | 8 | 0 | 1 | 9 | 9 | 224 | 2.1 | 51.2 | 2.32 |
| 1/19/10 | 17 | 33 | 34 | 35 | 0.111 | 129 | 1 | 23 | 153 | 0.111 | 129 | 1 | 23 | 153 | 153 | 225 | 1.7 | 50.3 | 4.34 |
| 1/20/10 | 51 | 30 | 38 | 90 | 0.111 | 387 | 3 | 70 | 459 | 0.111 | 387 | 3 | 70 | 459 | 459 | 225 | 1.8 | 46.0 | 13.20 |
| 1/21/10 | 53 | 34 | 38 | 65 | 0.111 | 971 | 8 | 174 | 1153 | 0.111 | 971 | 8 | 174 | 1153 | 1153 | 225 | 1.8 | 48.5 | 33.30 |
| 1/22/10 | 112 | 31 | 34 | 38 | 0.111 | 927 | 0 | 18 | 946 | 0.111 | 927 | 0 | 18 | 946 | 946 | 225 | 1.9 | 48.0 | 21.20 |
| 1/23/10 | 59 | 32 | 37 | 88 | 0.111 | 442 | 0 | 9 | 450 | 0.111 | 442 | 0 | 9 | 450 | 450 | 225 | 2.4 | 48.7 | 15.90 |
| 1/24/10 | 53 | 31 | 36 | 77 | 0.111 | 468 | 0 | 9 | 477 | 0.111 | 468 | 0 | 9 | 477 | 477 | 225 | 1.7 | 48.7 | 12.10 |
| 1/25/10 | 2 | 31 | 34 | 36 | 0.111 | 18 | 0 | 0 | 18 | 0.111 | 18 | 0 | 0 | 18 | 18 | 225 | 1.9 | 50.1 | 8.34 |
| 1/26/10 | 8 | 33 | 42 | 84 | 0.111 | 71 | 0 | 1 | 72 | 0.111 | 71 | 0 | 1 | 72 | 72 | 225 | 2.1 | 50.3 | 4.74 |
| 1/27/10 | 4 | 33 | 48 | 87 | 0.111 | 35 | 0 | 1 | 36 | 0.111 | 35 | 0 | 1 | 36 | 36 | 225 | 1.8 | 50.1 | 5.11 |
| 1/28/10 | 2 | 33 | 35 | 36 | 0.111 | 18 | 0 | 0 | 18 | 0.111 | 18 | 0 | 0 | 18 | 18 | 225 | 1.8 | 51.6 | 0.19 |
| 1/29/10 | 0 | - | - | - | 0.111 | 0 | 0 | 0 | 0 | 0.111 | 0 | 0 | 0 | 0 | 0 | 225 | 1.8 | 51.9 | 1.61 |
| 1/30/10 | 0 | - | - | - | 0.111 | 0 | 0 | 0 | 0 | 0.111 | 0 | 0 | 0 | 0 | 0 | 225 | 1.5 | 53.0 | 0.94 |
| 1/31/10 | 1 | 36 | 36 | 36 | 0.111 | 3 | 0 | 6 | 9 | 0.111 | 3 | 0 | 6 | 9 | 9 | 225 | 1.8 | 52.1 | 1.28 |
| 2/1/10 | 4 | 87 | 102 | 120 | 0.111 | 12 | 0 | 24 | 36 | 0.111 | 12 | 0 | 24 | 36 | 36 | 225 | 1.7 | 51.8 | 1.34 |
| 2/2/10 | 1 | 36 | 36 | 36 | 0.111 | 3 | 0 | 6 | 9 | 0.111 | 3 | 0 | 6 | 9 | 9 | 225 | 1.1 | 52.1 | 0.97 |
| 2/3/10 | 0 | - | - | - | 0.111 | 0 | 0 | 0 | 0 | 0.111 | 0 | 0 | 0 | 0 | 0 | 225 | 1.7 | 51.4 | 1.25 |
| 2/4/10 | 0 | - | - | - | 0.111 | 0 | 0 | 0 | 0 | 0.111 | 0 | 0 | 0 | 0 | 0 | 225 | 1.4 | 53.0 | 1.09 |
| 2/5/10 | 0 | - | - | - | 0.111 | 0 | 0 | 0 | 0 | 0.111 | 0 | 0 | 0 | 0 | 0 | 225 | 1.5 | 54.6 | 0.63 |


|  | Unmarked Chinook Salmon |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Environmental Conditions |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\frac{\text { rk Len }}{(\mathrm{mm})}$ |  | High Range | Esti | ated P | ssage - | igh | $\begin{gathered} \text { Low } \\ \text { Range } \end{gathered}$ | Esti | ted P | assage | Low | Median | $\frac{\text { Flow }}{\text { (cfs) }}$ |  |  |  |
| Date | Catch | Min | Avg | Max | Est. Efficiency | Fry | Parr | Smolt | Total | Est. Efficiency | Fry | Parr | Smolt | Total | Passage | La Grange | Velocity (ft/s) | Temp at Trap | Turbidity |
| 2/6/10 | 2 | 31 | 34 | 36 | 0.111 | 18 | 0 | 0 | 18 | 0.111 | 18 | 0 | 0 | 18 | 18 | 225 | 1.8 | 53.9 | 1.42 |
| 2/7/10 | 3 | 37 | 39 | 40 | 0.111 | 27 | 0 | 0 | 27 | 0.111 | 27 | 0 | 0 | 27 | 27 | 225 | 2.2 | 52.5 | 3.54 |
| 2/8/10 | 36 | 35 | 37 | 40 | 0.111 | 324 | 0 | 0 | 324 | 0.111 | 324 | 0 | 0 | 324 | 324 | 225 | 1.9 | 51.9 | 2.18 |
| 2/9/10 | 51 | 32 | 38 | 42 | 0.111 | 1054 | 0 | 0 | 1054 | 0.111 | 1054 | 0 | 0 | 1054 | 1054 | 225 | 1.8 | 52.6 | 7.99 |
| 2/10/10 | 45 | 31 | 36 | 44 | 0.111 | 396 | 0 | 0 | 396 | 0.111 | 396 | 0 | 0 | 396 | 396 | 225 | 2.1 | 51.6 | 1.16 |
| 2/11/10 | 15 | 35 | 38 | 40 | 0.111 | 63 | 0 | 0 | 63 | 0.111 | 63 | 0 | 0 | 63 | 63 | 225 | 1.7 | 53.7 | 5.82 |
| 2/12/10 | 1 | 33 | 33 | 33 | 0.111 | 9 | 0 | 0 | 9 | 0.111 | 9 | 0 | 0 | 9 | 9 | 225 | 1.5 | 52.7 | 1.83 |
| 2/13/10 | 7 | 31 | 46 | 103 | 0.111 | 61 | 0 | 2 | 63 | 0.111 | 61 | 0 | 2 | 63 | 63 | 225 | 1.6 | 53.2 | 1.26 |
| 2/14/10 | 1 | 87 | 87 | 87 | 0.111 | 9 | 0 | 0 | 9 | 0.111 | 9 | 0 | 0 | 9 | 9 | 225 | 1.4 | 53.6 | 1.24 |
| 2/15/10 | 4 | 32 | 52 | 99 | 0.111 | 35 | 0 | 1 | 36 | 0.111 | 35 | 0 | 1 | 36 | 36 | 225 | 1.5 | 53.7 | 1.94 |
| 2/16/10 | 6 | 31 | 34 | 37 | 0.111 | 52 | 0 | 2 | 54 | 0.111 | 52 | 0 | 2 | 54 | 54 | 225 | 1.9 | 54.5 | 0.68 |
| 2/17/10 | 19 | 30 | 35 | 38 | 0.111 | 165 | 0 | 6 | 171 | 0.111 | 165 | 0 | 6 | 171 | 171 | 225 | 1.8 | 54.8 | 0.59 |
| 2/18/10 | 43 | 30 | 35 | 37 | 0.111 | 373 | 0 | 14 | 387 | 0.111 | 373 | 0 | 14 | 387 | 387 | 225 | 2.0 | 55.2 | 0.37 |
| 2/19/10 | 29 | 33 | 36 | 38 | 0.111 | 259 | 2 | 0 | 261 | 0.111 | 259 | 2 | 0 | 261 | 261 | 225 | 2.2 | 56.1 | 1.66 |
| 2/20/10 | 15 | 35 | 36 | 38 | 0.111 | 107 | 1 | 0 | 108 | 0.111 | 107 | 1 | 0 | 108 | 108 | 225 | 1.5 | 54.2 | 1.14 |
| 2/21/10 | 22 | 32 | 36 | 38 | 0.111 | 187 | 2 | 0 | 189 | 0.111 | 187 | 2 | 0 | 189 | 189 | 225 | 1.8 | 53.9 | 0.92 |
| 2/22/10 | 18 | 30 | 35 | 38 | 0.111 | 161 | 2 | 0 | 162 | 0.111 | 161 | 2 | 0 | 162 | 162 | 225 | 1.6 | 51.9 | 0.76 |
| 2/23/10 | 10 | 34 | 39 | 60 | 0.111 | 89 | 1 | 0 | 90 | 0.111 | 89 | 1 | 0 | 90 | 90 | 225 | 2.1 | 52.5 | 0.20 |
| 2/24/10 | 6 | 35 | 36 | 36 | 0.111 | 36 | 0 | 0 | 36 | 0.111 | 36 | 0 | 0 | 36 | 36 | 225 | 2.0 | 51.0 | 1.68 |
| 2/25/10 | 13 | 33 | 35 | 37 | 0.111 | 116 | 1 | 0 | 117 | 0.111 | 116 | 1 | 0 | 117 | 117 | 227 | 1.8 | 51.2 | 4.93 |
| 2/26/10 | 29 | 34 | 42 | 89 | 0.111 | 243 | 14 | 5 | 261 | 0.111 | 243 | 14 | 5 | 261 | 261 | 224 | 1.7 | 53.5 | 5.92 |
| 2/27/10 | 14 | 32 | 36 | 38 | 0.111 | 117 | 7 | 2 | 126 | 0.111 | 117 | 7 | 2 | 126 | 126 | 225 | 1.9 | 53.4 | 3.89 |
| 2/28/10 | 40 | 34 | 36 | 41 | 0.111 | 335 | 19 | 6 | 360 | 0.111 | 335 | 19 | 6 | 360 | 360 | 222 | 1.9 | 52.2 | 9.17 |
| 3/1/10 | 48 | 33 | 46 | 140 | 0.111 | 402 | 23 | 8 | 432 | 0.111 | 402 | 23 | 8 | 432 | 432 | 224 | 1.4 | 54.6 | 15.50 |
| 3/2/10 | 21 | 35 | 42 | 65 | 0.111 | 134 | 8 | 3 | 144 | 0.111 | 134 | 8 | 3 | 144 | 144 | 223 | - | 54.0 | 5.50 |
| 3/3/10 | 26 | 33 | 46 | 72 | 0.111 | 151 | 9 | 3 | 162 | 0.111 | 151 | 9 | 3 | 162 | 162 | 224 | - | 54.1 | 4.67 |
| 3/4/10 | 6 | 34 | 41 | 62 | 0.111 | 50 | 3 | 1 | 54 | 0.111 | 50 | 3 | 1 | 54 | 54 | 225 | - | 51.0 | 7.52 |
| 3/5/10 | 22 | 34 | 51 | 131 | 0.111 | 169 | 25 | 5 | 198 | 0.111 | 169 | 25 | 5 | 198 | 198 | 224 | 2.1 | 52.1 | 14.60 |
| 3/6/10 | 12 | 33 | 42 | 64 | 0.111 | 92 | 13 | 3 | 108 | 0.111 | 92 | 13 | 3 | 108 | 108 | 223 | - | 53.6 | - |
| 3/7/10 | 7 | 34 | 48 | 56 | 0.111 | 54 | 8 | 2 | 63 | 0.111 | 54 | 8 | 2 | 63 | 63 | 224 | 2.0 | 53.0 | 4.11 |
| 3/8/10 | 13 | 34 | 35 | 37 | 0.111 | 100 | 15 | 3 | 117 | 0.111 | 100 | 15 | 3 | 117 | 117 | 224 | 2.0 | 55.0 | 4.41 |
| 3/9/10 | 19 | 34 | 42 | 61 | 0.111 | 146 | 21 | 4 | 171 | 0.111 | 146 | 21 | 4 | 171 | 171 | 223 | 2.2 | 50.0 | 1.53 |
| 3/10/10 | 21 | 34 | 44 | 75 | 0.111 | 161 | 23 | 5 | 189 | 0.111 | 161 | 23 | 5 | 189 | 189 | 226 | 2.0 | 52.1 | 3.15 |


|  | Unmarked Chinook Salmon |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Environmental Conditions |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{aligned} & \text { rk Len } \\ & \text { (mm) } \end{aligned}$ |  | High Range | Esti | ated P | ssage | High | $\begin{aligned} & \text { Low } \\ & \text { Range } \end{aligned}$ | Esti | ated P | ssage | Low | Median | $\frac{\text { Flow }}{\text { (cfs) }}$ |  |  |  |
| Date | Catch | Min | Avg | Max | Est. Efficiency | Fry | Parr | Smolt | Total | Est. Efficiency | Fry | Parr | Smolt | Total | Passage | La Grange | Velocity (ft/s) | Temp at Trap | Turbidity |
| 3/11/10 | 28 | 35 | 40 | 60 | 0.111 | 215 | 31 | 6 | 252 | 0.111 | 215 | 31 | 6 | 252 | 252 | 227 | 1.9 | 51.8 | 1.68 |
| 3/12/10 | 31 | 34 | 35 | 37 | 0.111 | 216 | 18 | 9 | 243 | 0.111 | 216 | 18 | 9 | 243 | 243 | 222 | 1.9 | 53.4 | 1.05 |
| 3/13/10 | 23 | 33 | 41 | 58 | 0.111 | 184 | 15 | 8 | 207 | 0.111 | 184 | 15 | 8 | 207 | 207 | 224 | 1.9 | 51.2 | 0.28 |
| 3/14/10 | 29 | 34 | 50 | 80 | 0.111 | 232 | 19 | 10 | 261 | 0.111 | 232 | 19 | 10 | 261 | 261 | 224 | 2.2 | 51.6 | 1.99 |
| 3/15/10 | 23 | 34 | 43 | 75 | 0.111 | 160 | 13 | 7 | 180 | 0.111 | 160 | 13 | 7 | 180 | 180 | 225 | 1.7 | 53.7 | 1.85 |
| 3/16/10 | 5 | 33 | 41 | 68 | 0.111 | 40 | 3 | 2 | 45 | 0.111 | 40 | 3 | 2 | 45 | 45 | 225 | 1.9 | 55.7 | 1.28 |
| 3/17/10 | 2 | 35 | 35 | 35 | 0.111 | 16 | 1 | 1 | 18 | 0.111 | 16 | 1 | 1 | 18 | 18 | 223 | 2.1 | 57.9 | 5.40 |
| 3/18/10 | 2 | 55 | 62 | 69 | 0.053 | 34 | 3 | 1 | 38 | 0.053 | 34 | 3 | 1 | 38 | 38 | 221 | 1.8 | 57.9 | 2.92 |
| 3/19/10 | 1 | 73 | 73 | 73 | 0.053 | 2 | 8 | 9 | 19 | 0.053 | 2 | 8 | 9 | 19 | 19 | 376 | 1.6 | 57.0 | 2.10 |
| 3/20/10 | 0 | - | - | - | 0.053 | 0 | 0 | 0 | 0 | 0.053 | 0 | 0 | 0 | 0 | 0 | 761 | 2.2 | 60.9 | - |
| 3/21/10 | 11 | 40 | 63 | 78 | 0.053 | 22 | 90 | 95 | 208 | 0.053 | 22 | 90 | 95 | 208 | 208 | 759 | 3.6 | 53.9 | 2.20 |
| 3/22/10 | 12 | 51 | 66 | 78 | 0.053 | 24 | 98 | 104 | 226 | 0.053 | 24 | 98 | 104 | 226 | 226 | 694 | 3.3 | 53.0 | 2.41 |
| 3/23/10 | 6 | 44 | 64 | 73 | 0.053 | 12 | 49 | 52 | 113 | 0.053 | 12 | 49 | 52 | 113 | 113 | 400 | 3.2 | 53.0 | 0.59 |
| 3/24/10 | 2 | 60 | 69 | 77 | 0.053 | 4 | 16 | 17 | 38 | 0.053 | 4 | 16 | 17 | 38 | 38 | 277 | 2.5 | 53.9 | 2.04 |
| 3/25/10 | 5 | 40 | 66 | 75 | 0.053 | 10 | 41 | 43 | 94 | 0.053 | 10 | 41 | 43 | 94 | 94 | 242 | - | 56.3 | 1.44 |
| 3/26/10 | 2 | 53 | 66 | 78 | 0.053 | 2 | 9 | 27 | 38 | 0.053 | 2 | 9 | 27 | 38 | 38 | 224 | - | 57.3 | 0.31 |
| 3/27/10 | 7 | 75 | 86 | 98 | 0.053 | 8 | 31 | 93 | 132 | 0.053 | 8 | 31 | 93 | 132 | 132 | 224 | - | 56.0 | 2.82 |
| 3/28/10 | 0 | - | - | - | 0.053 | 0 | 0 | 0 | 0 | 0.053 | 0 | 0 | 0 | 0 | 0 | 222 | - | 57.3 | 1.93 |
| 3/29/10 | 4 | 61 | 71 | 83 | 0.053 | 4 | 18 | 53 | 75 | 0.053 | 4 | 18 | 53 | 75 | 75 | 223 | - | 58.2 | 0.35 |
| 3/30/10 | 1 | 44 | 44 | 44 | 0.053 | 1 | 4 | 13 | 19 | 0.053 | 1 | 4 | 13 | 19 | 19 | 225 | - | 60.2 | 2.05 |
| 3/31/10 | 1 | 100 | 100 | 100 | 0.053 | 1 | 4 | 13 | 19 | 0.053 | 1 | 4 | 13 | 19 | 19 | 268 | - | 57.0 | 1.06 |
| 4/1/10 | 2 | 68 | 76 | 84 | 0.053 | 2 | 9 | 27 | 38 | 0.053 | 2 | 9 | 27 | 38 | 38 | 480 | - | 55.4 | 1.59 |
| 4/2/10 | 11 | 63 | 82 | 104 | 0.053 | 0 | 38 | 170 | 208 | 0.053 | 0 | 38 | 170 | 208 | 208 | 634 | - | 52.8 | 0.97 |
| 4/3/10 | 12 | 53 | 74 | 90 | 0.053 | 0 | 41 | 185 | 226 | 0.053 | 0 | 41 | 185 | 226 | 226 | 652 | - | 51.0 | 1.89 |
| 4/4/10 | 7 | 62 | 76 | 85 | 0.053 | 0 | 24 | 108 | 132 | 0.053 | 0 | 24 | 108 | 132 | 132 | 652 | - | 50.5 | 0.66 |
| 4/5/10 | 2 | 66 | 68 | 69 | 0.053 | 0 | 7 | 31 | 38 | 0.053 | 0 | 7 | 31 | 38 | 38 | 651 | - | 50.3 | - |
| 4/6/10 | 11 | 67 | 81 | 88 | 0.053 | 0 | 38 | 170 | 208 | 0.053 | 0 | 38 | 170 | 208 | 208 | 653 | - | 52.0 | 1.51 |
| 4/7/10 | 12 | 68 | 79 | 90 | 0.053 | 0 | 41 | 185 | 226 | 0.053 | 0 | 41 | 185 | 226 | 226 | 652 | - | 52.7 | 0.55 |
| 4/8/10 | 15 | 70 | 80 | 90 | 0.053 | 0 | 51 | 232 | 283 | 0.053 | 0 | 51 | 232 | 283 | 283 | 652 | - | 54.3 | 1.04 |
| 4/9/10 | 11 | 69 | 85 | 95 | 0.053 | 5 | 10 | 192 | 208 | 0.053 | 5 | 10 | 192 | 208 | 208 | 707 | - | 54.3 | 0.39 |
| 4/10/10 | 6 | 65 | 79 | 88 | 0.053 | 3 | 6 | 105 | 113 | 0.053 | 3 | 6 | 105 | 113 | 113 | 759 | - | 55.2 | 1.78 |
| 4/11/10 | 0 | - | - | - | 0.053 | 0 | 0 | 0 | 0 | 0.053 | 0 | 0 | 0 | 0 | 0 | 760 | - | 52.8 | 0.67 |
| 4/12/10 | 5 | 38 | 71 | 97 | 0.02 | 6 | 12 | 232 | 250 | 0.056 | 2 | 4 | 83 | 89 | 170 | 1080 | - | 50.1 | 1.42 |


|  | Unmarked Chinook Salmon |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Environmental Conditions |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\frac{\text { Fork Length }}{(\mathrm{mm})}$ |  |  | High Range | Estimated Passage - High |  |  |  | Low Range <br> Est. Efficiency | Estimated Passage - Low |  |  |  | Median | $\frac{\text { Flow }}{\text { (cfs) }}$ | Velocity (ft/s) | Temp at Trap | Turbidity |
| Date | Catch | Min | Avg | Max | Est. <br> Efficiency | Fry | Parr | Smolt | Total |  | Fry | Parr | Smolt | Total | Passage | La Grange |  |  |  |
| 4/13/10 | 10 | 76 | 85 | 100 | 0.02 | 12 | 24 | 463 | 500 | 0.056 | 4 | 9 | 166 | 179 | 339 | 1270 | ( | 50.2 | 2.79 |
| 4/14/10 | 6 | 74 | 79 | 95 | 0.02 | 7 | 15 | 278 | 300 | 0.056 | 3 | 5 | 99 | 107 | 204 | 1260 | - | 52.1 | 1.31 |
| 4/15/10 | 4 | 71 | 86 | 96 | 0.02 | 5 | 10 | 185 | 200 | 0.056 | 2 | 3 | 66 | 71 | 136 | 1330 | - | - | 2.94 |
| 4/16/10 | 1 | - | - | - | 0.02 | 1 | 0 | 49 | 50 | 0.056 | 1 | 0 | 17 | 18 | 34 | 1580 | - | 54.2 | 2.20 |
| 4/17/10 | 7 | 72 | 82 | 92 | 0.02 | 10 | 0 | 340 | 350 | 0.056 | 4 | 0 | 121 | 125 | 238 | 1770 | - | 53.9 | 1.37 |
| 4/18/10 | 5 | 81 | 89 | 99 | 0.02 | 7 | 0 | 243 | 250 | 0.056 | 3 | 0 | 87 | 89 | 170 | 1950 | - | 52.8 | 2.30 |
| 4/19/10 | 12 | 70 | 87 | 109 | 0.02 | 18 | 0 | 582 | 600 | 0.056 | 6 | 0 | 208 | 214 | 407 | 1980 | - | 53.4 | 1.60 |
| 4/20/10 | 3 | 74 | 80 | 83 | 0.02 | 4 | 0 | 146 | 150 | 0.056 | 2 | 0 | 52 | 54 | 102 | 2140 | - | 52.1 | 3.48 |
| 4/21/10 | 5 | 87 | 90 | 95 | 0.02 | 7 | 0 | 243 | 250 | 0.056 | 3 | 0 | 87 | 89 | 170 | 2150 | - | 50.9 | 1.48 |
| 4/22/10 | 2 | 37 | 63 | 88 | 0.02 | 3 | 0 | 97 | 100 | 0.056 | 1 | 0 | 35 | 36 | 68 | 2130 | - | 50.1 | - |
| 4/23/10 | 7 | 46 | 82 | 105 | 0.02 | 48 | 0 | 302 | 350 | 0.056 | 17 | 0 | 108 | 125 | 238 | 2160 | - | 51.9 | 5.37 |
| 4/24/10 | 5 | 35 | 70 | 98 | 0.02 | 34 | 0 | 216 | 250 | 0.056 | 12 | 0 | 77 | 89 | 170 | 1990 | - | 51.8 | 0.66 |
| 4/25/10 | 13 | 36 | 83 | 96 | 0.02 | 89 | 0 | 561 | 650 | 0.056 | 32 | 0 | 200 | 232 | 441 | 1770 | - | 52.7 | 0.55 |
| 4/26/10 | 5 | 80 | 86 | 95 | 0.02 | 34 | 0 | 216 | 250 | 0.056 | 12 | 0 | 77 | 89 | 170 | 1750 | - | 52.8 | 1.52 |
| 4/27/10 | 3 | 89 | 92 | 93 | 0.02 | 20 | 0 | 130 | 150 | 0.056 | 7 | 0 | 46 | 54 | 102 | 1750 | - | 53.0 | 1.69 |
| 4/28/10 | 6 | 80 | 87 | 95 | 0.02 | 41 | 0 | 259 | 300 | 0.056 | 15 | 0 | 93 | 107 | 204 | 1740 | - | 51.6 | 1.06 |
| 4/29/10 | 7 | 86 | 95 | 112 | 0.02 | 48 | 0 | 302 | 350 | 0.056 | 17 | 0 | 108 | 125 | 238 | 1770 | - | 50.3 | - |
| 4/30/10 | 14 | 83 | 97 | 113 | 0.02 | 21 | 0 | 679 | 700 | 0.056 | 8 | 0 | 242 | 250 | 475 | 2090 | - | 51.0 | 1.37 |
| 5/1/10 | 13 | 34 | 92 | 115 | 0.02 | 23 | 0 | 727 | 750 | 0.056 | 8 | 0 | 260 | 268 | 509 | 2350 | - | 52.0 | 0.65 |
| 5/2/10 | 14 | 79 | 92 | 100 | 0.02 | 21 | 0 | 679 | 700 | 0.056 | 8 | 0 | 242 | 250 | 475 | 2340 | - | 52.2 | 0.80 |
| 5/3/10 | 15 | 81 | 93 | 104 | 0.02 | 23 | 0 | 727 | 750 | 0.056 | 8 | 0 | 260 | 268 | 509 | 2560 | - | 54.1 | 1.04 |
| 5/4/10 | 34 | 35 | 88 | 109 | 0.02 | 57 | 0 | 1793 | 1850 | 0.056 | 20 | 0 | 640 | 661 | 1255 | - | - | 52.3 | 2.60 |
| 5/5/10 | 12 | 90 | 97 | 104 | 0.02 | 18 | 0 | 582 | 600 | 0.056 | 7 | 0 | 208 | 214 | 407 | 3280 | - | 48.0 | 1.19 |
| 5/6/10 | 3 | 97 | 101 | 104 | 0.02 | 5 | 0 | 145 | 150 | 0.056 | 2 | 0 | 52 | 54 | 102 | 3280 | - | 51.2 | 1.77 |
| 5/7/10 | 8 | 79 | 96 | 107 | 0.02 | 0 | 0 | 400 | 400 | 0.056 | 0 | 0 | 143 | 143 | 271 | 3290 | - | 52.3 | 0.95 |
| 5/8/10 | 6 | 90 | 98 | 115 | 0.02 | 0 | 0 | 300 | 300 | 0.056 | 0 | 0 | 107 | 107 | 204 | 3290 | - | 50.9 | 0.93 |
| 5/9/10 | 19 | 85 | 98 | 108 | 0.02 | 0 | 0 | 950 | 950 | 0.056 | 0 | 0 | 339 | 339 | 645 | 3280 | - | 51.0 | 1.43 |
| 5/10/10 | 15 | 84 | 96 | 108 | 0.02 | 0 | 0 | 750 | 750 | 0.056 | 0 | 0 | 268 | 268 | 509 | 3290 | - | 52.5 | 1.15 |
| 5/11/10 | 6 | 99 | 108 | 115 | 0.02 | 0 | 0 | 300 | 300 | 0.056 | 0 | 0 | 107 | 107 | 204 | 3300 | 4.7 | 50.0 | 0.69 |
| 5/12/10 | 22 | 84 | 100 | 116 | 0.02 | 0 | 0 | 1100 | 1100 | 0.056 | 0 | 0 | 393 | 393 | 746 | 3120 | 5.2 | 51.6 | 0.16 |
| 5/13/10 | 28 | 83 | 99 | 117 | 0.02 | 0 | 0 | 1400 | 1400 | 0.056 | 0 | 0 | 500 | 500 | 950 | 2680 | - | 57.4 | 0.53 |
| 5/14/10 | 43 | 75 | 97 | 112 | 0.02 | 18 | 0 | 2132 | 2150 | 0.056 | 7 | 0 | 761 | 768 | 1459 | 2580 | - | 50.8 | 0.39 |
| 5/15/10 | 51 | 35 | 98 | 119 | 0.02 | 22 | 0 | 2528 | 2550 | 0.056 | 8 | 0 | 903 | 911 | 1730 | 2440 | 5.1 | 54.5 | 0.98 |


|  | Unmarked Chinook Salmon |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Environmental Conditions |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{aligned} & \text { rk Len } \\ & (\mathrm{mm}) \end{aligned}$ |  | High <br> Range |  | ated P | sage | igh | Low Range | Esti | ated | assage | Low | Median | $\frac{\text { Flow }}{\text { (cfs) }}$ |  |  |  |
| Date | Catch | Min | Avg | Max | Est. Efficiency | Fry | Parr | Smolt | Total | Est. Efficiency | Fry | Parr | Smolt | Total | Passage | La Grange | Velocity (ft/s) | Temp at Trap | Turbidity |
| 5/16/10 | 36 | 81 | 99 | 115 | 0.02 | 15 | 0 | 1785 | 1800 | 0.056 | 6 | 0 | 637 | 643 | 1221 | 2230 | 4.6 | 53.4 | 0.14 |
| 5/17/10 | 17 | 88 | 99 | 109 | 0.02 | 8 | 0 | 892 | 900 | 0.056 | 3 | 0 | 319 | 321 | 611 | 2160 | 4.2 | 53.2 | 0.52 |
| 5/18/10 | 11 | 85 | 99 | 110 | 0.02 | 5 | 0 | 545 | 550 | 0.056 | 2 | 0 | 195 | 196 | 373 | 2160 | 5.0 | 52.3 | 0.71 |
| 5/19/10 | 50 | 45 | 99 | 118 | 0.02 | 21 | 0 | 2479 | 2500 | 0.056 | 8 | 0 | 885 | 893 | 1696 | 2150 | 4.7 | 53.9 | 0.97 |
| 5/20/10 | 26 | 89 | 101 | 116 | 0.02 | 11 | 0 | 1289 | 1300 | 0.056 | 4 | 0 | 460 | 464 | 882 | 2140 | 4.6 | 52.7 | 0.75 |
| 5/21/10 | 31 | 83 | 98 | 111 | 0.02 | 0 | 0 | 1550 | 1550 | 0.056 | 0 | 0 | 554 | 554 | 1052 | 2150 | 4.6 | 53.2 | 0.65 |
| 5/22/10 | 35 | 84 | 100 | 113 | 0.02 | 0 | 0 | 1750 | 1750 | 0.056 | 0 | 0 | 625 | 625 | 1188 | 3060 | 4.9 | 51.0 | 0.52 |
| 5/23/10 | 2 | 88 | 88 | 88 | 0.02 | 0 | 0 | 150 | 150 | 0.056 | 0 | 0 | 54 | 54 | 102 | 3140 | 5.3 | 51.0 | 1.29 |
| 5/24/10 | 35 | 90 | 98 | 113 | 0.02 | 0 | 0 | 1800 | 1800 | 0.056 | 0 | 0 | 643 | 643 | 1221 | 3150 | 5.2 | 51.2 | 0.76 |
| 5/25/10 | 33 | 79 | 97 | 111 | 0.02 | 0 | 0 | 1700 | 1700 | 0.056 | 0 | 0 | 607 | 607 | 1154 | 3140 | 5.3 | 53.2 | - |
| 5/26/10 | 7 | 90 | 101 | 113 | 0.02 | 0 | 0 | 350 | 350 | 0.056 | 0 | 0 | 125 | 125 | 238 | 3160 | 4.2 | 52.7 | 2.05 |
| 5/27/10 | 11 | 91 | 102 | 118 | 0.02 | 0 | 0 | 550 | 550 | 0.056 | 0 | 0 | 196 | 196 | 373 | 2610 | 5.3 | 52.8 | - |
| 5/28/10 | 22 | 72 | 98 | 112 | 0.02 | 0 | 12 | 1088 | 1100 | 0.056 | 0 | 4 | 388 | 393 | 746 | 2250 | 5.1 | 53.0 | 0.08 |
| 5/29/10 | 21 | 78 | 98 | 110 | 0.02 | 0 | 12 | 1038 | 1050 | 0.056 | 0 | 4 | 371 | 375 | 713 | 2050 | 5.0 | 51.9 | 0.71 |
| 5/30/10 | 14 | 86 | 100 | 113 | 0.02 | 0 | 8 | 692 | 700 | 0.056 | 0 | 3 | 247 | 250 | 475 | 2040 | 5.0 | 53.0 | 0.31 |
| 5/31/10 | 7 | 60 | 91 | 109 | 0.02 | 0 | 4 | 346 | 350 | 0.056 | 0 | 1 | 124 | 125 | 238 | 2040 | 4.6 | 54.5 | 0.94 |
| 6/1/10 | 6 | 77 | 94 | 105 | 0.02 | 0 | 3 | 297 | 300 | 0.056 | 0 | 1 | 106 | 107 | 204 | 2040 | 4.5 | 56.1 | 1.05 |
| 6/2/10 | 13 | 84 | 96 | 111 | 0.02 | 0 | 7 | 643 | 650 | 0.056 | 0 | 3 | 230 | 232 | 441 | 2030 | 4.6 | 54.6 | 0.32 |
| 6/3/10 | 8 | 77 | 94 | 109 | 0.02 | 0 | 4 | 396 | 400 | 0.056 | 0 | 2 | 141 | 143 | 271 | 2050 | 3.7 | 56.1 | 0.26 |
| 6/4/10 | 3 | 95 | 104 | 109 | 0.02 | 0 | 0 | 150 | 150 | 0.056 | 0 | 0 | 54 | 54 | 102 | 3260 | 5.1 | 56.3 | 1.62 |
| 6/5/10 | 0 | - | - | - | 0.02 | 0 | 0 | 0 | 0 | 0.056 | 0 | 0 | 0 | 0 | 0 | 3140 | 4.9 | 55.0 | 0.26 |
| 6/6/10 | 5 | 85 | 97 | 110 | 0.02 | 0 | 0 | 250 | 250 | 0.056 | 0 | 0 | 89 | 89 | 170 | 2270 | 5.3 | 54.3 | 0.22 |
| 6/7/10 | 7 | 72 | 93 | 112 | 0.02 | 0 | 0 | 350 | 350 | 0.056 | 0 | 0 | 125 | 125 | 238 | 1940 | 4.8 | 55.9 | 0.76 |
| 6/8/10 | 4 | 83 | 93 | 102 | 0.02 | 0 | 0 | 200 | 200 | 0.056 | 0 | 0 | 71 | 71 | 136 | 1750 | 4.3 | 55.4 | 0.85 |
| 6/9/10 | 4 | 75 | 94 | 103 | 0.02 | 0 | 0 | 200 | 200 | 0.056 | 0 | 0 | 71 | 71 | 136 | 2060 | 4.4 | 56.3 | 0.22 |
| 6/10/10 | 3 | 94 | 107 | 125 | 0.02 | 0 | 0 | 150 | 150 | 0.056 | 0 | 0 | 54 | 54 | 102 | 4090 | 5.1 | 53.0 | 1.10 |
| 6/11/10 | 0 | - | - | - | 0.02 | 0 | 0 | 0 | 0 | 0.056 | 0 | 0 | 0 | 0 | 0 | 4450 | - | 52.7 | 1.38 |

Appendix B. Daily Chinook catch, length, predicted trap efficiency, and estimated passage at Grayson and
environmental data from 2010 .


B-1

|  | Unmarked Chinook Salmon |  |  |  |  |  |  |  |  | Environmental Conditions |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \frac{\text { Fork Length }}{(\mathrm{mm})} \\ & \hline \end{aligned}$ |  |  |  | Estimated Passage |  |  |  | $\begin{aligned} & \text { Flow } \\ & \text { (cfs) } \\ & \hline \end{aligned}$ | Veloci | (ft/s) |  |  |
| Date | Catch | Min | Avg | Max | Est. Efficiency | Fry | Parr | Smolt | Total | Modesto Flow | North | South | Temp at the traps | Turbidity |
| 2/17/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 318 | 2.0 | 2.0 | 58.4 | 6.99 |
| 2/18/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 317 | 2.0 | 2.1 | 58.4 | 2.39 |
| 2/19/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 314 | 2.1 | 2.0 | 57.5 | 2.93 |
| 2/20/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 309 | 1.8 | 1.9 | 56.4 | 4.22 |
| 2/21/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 309 | 1.5 | 1.9 | 56.4 | 2.60 |
| 2/22/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 307 | 1.8 | 1.8 | 54.7 | 4.05 |
| 2/23/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 308 | 1.7 | 2.0 | 53.6 | 0.51 |
| 2/24/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 332 | 2.0 | 2.1 | 54.3 | 6.81 |
| 2/25/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 1338 | 2.3 | 2.1 | 53.7 | 16.80 |
| 2/26/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 568 | 2.4 | 2.1 | 55.2 | 32.30 |
| 2/27/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 510 | 2.2 | 2.1 | 54.9 | 14.40 |
| 2/28/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 1423 | 2.3 | 2.6 | 55.7 | 33.80 |
| 3/1/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 520 | - | - | 56.8 | 28.10 |
| 3/2/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 409 | - | - | 55.1 | 12.60 |
| $3 / 3 / 10$ | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 403 | - | - | 55.2 | 16.30 |
| 3/4/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 1380 | - | - | 53.0 | 16.70 |
| 3/5/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 1140 | 1.5 | 1.8 | 54.5 | 50.10 |
| 3/6/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 482 | 1.0 | 2.2 | 56.5 | 27.70 |
| 3/7/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 410 | 2.2 | 2.1 | 56.5 | 15.40 |
| 3/8/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 376 | - | - | 55.0 | 10.48 |
| 3/9/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 354 | 1.8 | 2.1 | 55.3 | 6.53 |
| 3/10/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 344 | 1.8 | 1.8 | 55.7 | 3.89 |
| 3/11/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 336 | 1.8 | 1.8 | 55.2 | 4.24 |
| 3/12/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 332 | 1.4 | 1.8 | 54.8 | 3.28 |
| 3/13/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 328 | 2.0 | 1.8 | 55.7 | 8.65 |
| 3/14/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 379 | 1.9 | 1.8 | 56.9 | 2.11 |
| 3/15/10 | 1 | 37 | 37 | 37 | 0.181 | 6 | 0 | 0 | 6 | 365 | 1.8 | 1.7 | 59.0 | 6.48 |
| 3/16/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 359 | 1.9 | 1.6 | 61.4 | 3.45 |
| 3/17/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 359 | 1.7 | 1.7 | 62.1 | 3.45 |
| 3/18/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 347 | 1.7 | 1.6 | 62.3 | 5.85 |
| 3/19/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 337 | 1.6 | 1.8 | 62.8 | 3.21 |
| 3/20/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 483 | 1.7 | 1.5 | 62.0 | 4.18 |
| 3/21/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 864 | 2.4 | 1.9 | 59.5 | 1.52 |
| 3/22/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 862 | 2.4 | 2.2 | 58.3 | 4.14 |
| 3/23/10 | 1 | 100 | 100 | 100 | 0.018 | 0 | 0 | 57 | 57 | 793 | 2.4 | 2.4 | 58.9 | 2.69 |
| 3/24/10 | 1 | 80 | 80 | 80 | 0.039 | 0 | 0 | 25 | 25 | 505 | - | - | 59.6 | 3.58 |
| 3/25/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 374 | - | - | 59.7 | 2.69 |
| 3/26/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 323 | - | - | 61.1 | 1.12 |
| 3/27/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 293 | - | - | 62.7 | 3.54 |
| 3/28/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 292 | - | - | 63.4 | 0.99 |
| 3/29/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 280 | - | - | 63.6 | 4.22 |
| 3/30/10 | 1 | 90 | 90 | 90 | 0.031 | 0 | 0 | 32 | 32 | 274 | - | - | 61.5 | 1.29 |
| 3/31/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 271 | - | - | 61.0 | - |
| 4/1/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 296 | - | - | 58.7 | 2.02 |
| 4/2/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 486 | - | - | 56.6 | 2.02 |


|  | Unmarked Chinook Salmon |  |  |  |  |  |  |  |  | Environmental Conditions |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\frac{\text { Fork Length }}{(\mathrm{mm})}$ |  |  |  | Estimated Passage |  |  |  | $\begin{aligned} & \hline \text { Flow } \\ & \text { (cfs) } \\ & \hline \end{aligned}$ | Velocity (ft/s) |  |  |  |
| Date | Catch | Min | Avg | Max | Est. <br> Efficiency | Fry | Parr | Smolt | Total | Modesto Flow | North | South | Temp at the traps | Turbidity |
| 4/3/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 651 | - | - | 53.7 | 2.96 |
| 4/4/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 706 | - | - | 54.2 | 9.39 |
| 4/5/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 741 | - | - | 55.1 | 4.33 |
| 4/6/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 722 | - | - | 57.2 | 3.69 |
| 4/7/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 735 | - | - | 59.4 | 4.00 |
| 4/8/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 723 | - | - | 59.6 | 3.06 |
| 4/9/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 698 | - | - | 59.3 | 3.26 |
| 4/10/10 | 1 | 93 | 93 | 93 | 0.023 | 0 | 0 | 44 | 44 | 743 | - | - | 56.8 | 3.18 |
| 4/11/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 813 | - | - | 54.8 | 3.18 |
| 4/12/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 820 | - | - | 55.1 | 2.34 |
| 4/13/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 1050 | - | - | 55.7 | 2.12 |
| 4/14/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 1200 | - | - | 56.7 | 3.23 |
| 4/15/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 1210 | - | - | 57.7 | 5.23 |
| 4/16/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 1260 | - | - | 58.0 | 3.08 |
| 4/17/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 1450 | - | - | 57.8 | 2.87 |
| 4/18/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 1610 | - | - | 57.4 | 3.02 |
| 4/19/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 1730 | - | - | 56.3 | 4.79 |
| 4/20/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 1930 | - | - | 53.8 | 6.11 |
| 4/21/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 2274 | - | - | 52.7 | - |
| 4/22/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 2280 | - | - | 54.0 | 2.66 |
| 4/23/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 2267 | - | - | 56.3 | 5.92 |
| 4/24/10 | 1 | 90 | 90 | 90 | 0.013 | 0 | 0 | 76 | 76 | 2298 | - | - | 57.8 | 2.14 |
| 4/25/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 2114 | - | - | 58.4 | 2.43 |
| 4/26/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 1881 | - | - | 57.8 | 1.95 |
| 4/27/10 | 1 | 88 | 88 | 88 | 0.017 | 0 | 0 | 59 | 59 | 1855 | - | - | 56.1 | 3.59 |
| 4/28/10 | 1 | 80 | 80 | 80 | 0.022 | 0 | 0 | 45 | 45 | 1848 | - | - | 54.6 | 3.48 |
| 4/29/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 1836 | - | - | 55.2 | 3.23 |
| 4/30/10 | 1 | 99 | 99 | 99 | 0.012 | 0 | 0 | 86 | 86 | 1869 | - | - | 56.3 | 3.00 |
| 5/1/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 2188 | - | - | 56.8 | - |
| 5/2/10 | 1 | 90 | 90 | 90 | 0.012 | 0 | 0 | 80 | 80 | 2445 | - | - | 57.3 | - |
| 5/3/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 2441 | - | - | 57.4 | 9.29 |
| 5/4/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 2659 | - | - | 56.2 | 2.07 |
| 5/5/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 3378 | - | - | 55.2 | 2.46 |
| 5/6/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 3392 | - | - | 55.1 | - |
| 5/7/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 3387 | - | - | 55.6 | - |
| 5/8/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 3395 | - | - | 55.2 | 1.95 |
| 5/9/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 3395 | - | - | 53.4 | 3.43 |
| 5/10/10 | 1 | 84 | 84 | 84 | 0.010 | 0 | 0 | 97 | 97 | 3379 | - | - | 53.3 | 2.50 |
| 5/11/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 3399 | 4.0 | 4.3 | 54.9 | 1.58 |
| 5/12/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 3419 | 3.0 | 3.0 | 56.1 | 2.05 |
| 5/13/10 | 1 | 105 | 105 | 105 | 0.005 | 0 | 0 | 187 | 187 | 3233 | - | - | 57.1 | 1.52 |
| 5/14/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 2782 | - | - | 57.6 | 1.63 |
| 5/15/10 | 1 | - | - | - | 0.009 | 0 | 0 | 118 | 118 | 2700 | 3.1 | 3.2 | 57.9 | 0.69 |
| 5/16/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 2553 | 2.8 | 3.1 | 56.9 | 1.51 |
| 5/17/10 | 1 | 91 | 91 | 91 | 0.013 | 0 | 0 | 80 | 80 | 2337 | 2.8 | 2.5 | 56.1 | 1.52 |


|  | Unmarked Chinook Salmon |  |  |  |  |  |  |  |  | Environmental Conditions |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \text { Fork Length } \\ (\mathrm{mm}) \end{gathered}$ |  |  |  | Estimated Passage |  |  |  | $\begin{aligned} & \text { Flow } \\ & \text { (cfs) } \\ & \hline \end{aligned}$ | Velocity (ft/s) |  |  |  |
| Date | Catch | Min | Avg | Max | Est. <br> Efficiency | Fry | Parr | Smolt | Total | Modesto Flow | North | South | Temp at the traps | Turbidity |
| 5/18/10 | 1 | 100 | 100 | 100 | 0.010 | 0 | 0 | 105 | 105 | 2257 | 3.1 | 3.5 | 56.9 | 1.43 |
| 5/19/10 | 1 | 104 | 104 | 104 | 0.008 | 0 | 0 | 120 | 120 | 2256 | 3.0 | 3.2 | 57.3 | 0.92 |
| 5/20/10 | 6 | 99 | 104 | 108 | 0.008 | 0 | 0 | 718 | 718 | 2266 | 3.0 | 3.3 | 57.0 | 2.68 |
| 5/21/10 | 3 | 95 | 102 | 110 | 0.009 | 0 | 0 | 333 | 333 | 2267 | 3.0 | 3.2 | 55.9 | 4.28 |
| 5/22/10 | 1 | 117 | 117 | 117 | 0.005 | 0 | 0 | 187 | 187 | 2266 | 2.1 | 3.4 | 55.3 | 2.28 |
| 5/23/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 3178 | 3.3 | 3.6 | 55.4 | 0.24 |
| 5/24/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 3264 | 3.7 | 3.1 | 55.3 | 2.56 |
| 5/25/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 3274 | 3.7 | 3.8 | 54.9 | 0.70 |
| 5/26/10 | 1 | 100 | 100 | 100 | 0.006 | 0 | 0 | 159 | 159 | 3255 | 3.6 | 3.7 | 55.5 | 2.25 |
| 5/27/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 3284 | - | - | 55.7 | 1.77 |
| 5/28/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 2757 | 3.7 | 3.5 | 57.2 | 1.30 |
| 5/29/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 2410 | 3.0 | 3.2 | 58.6 | 6.18 |
| 5/30/10 | 1 | 110 | 110 | 110 | 0.007 | 0 | 0 | 143 | 143 | 2186 | 2.8 | 3.0 | 59.3 | 1.58 |
| 5/31/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 2180 | 1.7 | 2.9 | 59.6 | 2.66 |
| 6/1/10 | 2 | 98 | 100 | 101 | 0.010 | 0 | 0 | 197 | 197 | 2161 | 2.4 | 1.9 | 60.1 | 1.13 |
| 6/2/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 2159 | 2.8 | 3.0 | 60.7 | 1.40 |
| 6/3/10 | 1 | 97 | 97 | 97 | 0.011 | 0 | 0 | 90 | 90 | 2146 | 2.8 | 3.2 | 61.2 | 1.38 |
| 6/4/10 | 1 | 96 | 96 | 96 | 0.011 | 0 | 0 | 87 | 87 | 2157 | 2.9 | 3.1 | 60.3 | 1.41 |
| 6/5/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 3355 | 3.5 | 3.6 | 60.1 | 0.52 |
| 6/6/10 | 1 | 98 | 98 | 98 | 0.007 | 0 | 0 | 148 | 148 | 3251 | 3.4 | 3.2 | 61.0 | 0.97 |
| 6/7/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 2387 | 3.1 | 3.2 | 61.1 | 2.10 |
| 6/8/10 | 1 | - | - | - | 0.012 | 0 | 0 | 86 | 86 | 2048 | 2.7 | 3.2 | 61.2 | 2.03 |
| 6/9/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 1862 | 2.3 | 2.7 | 60.5 | 0.92 |
| 6/10/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 2157 | 2.7 | 2.8 | 57.7 | 2.46 |
| 6/11/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 4192 | 3.4 | 3.6 | 57.4 | 5.56 |
| 6/12/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 4585 | 3.8 | 4.0 | 57.9 | 4.09 |
| 6/13/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 4555 | 3.6 | 3.8 | 57.6 | 2.02 |
| 6/14/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 5620 | 4.1 | 4.1 | 57.8 | 1.94 |
| 6/15/10 | 2 | 95 | 97 | 98 | 0.004 | 0 | 0 | 458 | 458 | 4410 | 4.5 | 4.0 | 58.0 | 2.26 |
| 6/16/10 | 0 | - | - | - | - | 0 | 0 | 0 | 0 | 3997 | 3.8 | 3.6 | 58.1 | 2.06 |
| 6/17/10 | 1 | 105 | 105 | 105 | 0.005 | 0 | 0 | 191 | 191 | 3283 | 2.1 | 2.4 | 58.9 | 1.25 |

Appendix C. Daily counts of non-salmonids captured at Waterford during 2010.

| Batch Date | BGS | BRB | CHC | GSF | GSN | LAM | LMB | MQK | PRS | RES | RSN | SASQ | SASU | SMB | TP | W | WHC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1/4/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1/5/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1/6/10 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1/7/10 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 1/8/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1/9/10 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 1/10/10 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1/11/10 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 1/12/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1/13/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| 1/14/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1/15/10 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| 1/16/10 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 |
| 1/17/10 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1/18/10 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 1/19/10 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 1/20/10 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1/21/10 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| 1/22/10 | 2 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 3 |
| 1/23/10 | 3 | 0 | 0 | 0 | 1 | 4 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 |
| 1/24/10 | 2 | 0 | 0 | 0 |  | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1/25/10 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 1/26/10 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| 1/27/10 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 1/28/10 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1/29/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1/30/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1/31/10 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2/1/10 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2/2/10 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 2/3/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2/4/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2/5/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2/6/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2/7/10 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 |
| 2/8/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2/9/10 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| 2/10/10 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| 2/11/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| 2/12/10 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |


| Batch Date | BGS | BRB | CHC | GSF | GSN | LAM | LMB | MQK | PRS | RES | RSN | SASQ | SASU | SMB | TP | W | WHC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2/13/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
| 2/14/10 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2/15/10 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2/16/10 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2/17/10 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2/18/10 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2/19/10 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 2/20/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2/21/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2/22/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2/23/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2/24/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 2/25/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2/26/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2/27/10 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| 2/28/10 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 3/1/10 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 3/2/10 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $3 / 3 / 10$ | 2 | 0 | 1 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
| 3/4/10 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| 3/5/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
| 3/6/10 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 |
| 3/7/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| 3/8/10 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
| 3/9/10 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
| 3/10/10 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
| $3 / 11 / 10$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| $3 / 12 / 10$ | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 3/13/10 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $3 / 14 / 10$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3/15/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 3/16/10 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 3/17/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3/18/10 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 |
| 3/19/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| 3/20/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3/21/10 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
| 3/22/10 | 11 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
| 3/23/10 | 6 | 0 | 3 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 18 |
| 3/24/10 | 6 | 0 | 3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 6 |
| 3/25/10 | 3 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| 3/26/10 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |


| Batch Date | BGS | BRB | CHC | GSF | GSN | LAM | LMB | MQK | PRS | RES | RSN | SASQ | SASU | SMB | TP | W | WHC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3/27/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3/28/10 | 3 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
| 3/29/10 | 5 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 3/30/10 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| 3/31/10 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 4/1/10 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 4/2/10 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 |
| 4/3/10 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 6 |
| 4/4/10 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 |
| 4/5/10 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
| 4/6/10 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 17 |
| 4/7/10 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 |
| 4/8/10 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 |
| 4/9/10 | 3 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 1 |  | 8 |
| 4/10/10 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 |
| 4/11/10 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 11 |
| 4/12/10 | 1 | 0 | 2 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 |
| 4/13/10 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 4/14/10 | 4 | 0 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 5 | 4 | 1 | 0 | 0 | 13 |
| 4/15/10 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 13 |
| 4/16/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 4/17/10 | 4 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 3 | 0 | 0 | 0 | 18 |
| 4/18/10 | 5 | 0 | 2 | 0 | 0 | 1 | 1 | 2 | 0 | 1 | 0 | 21 | 2 | 0 | 0 | 1 | 10 |
| 4/19/10 | 0 | 0 | 3 | 0 | 0 | 2 | 0 | 2 | 0 | 1 | 0 | 24 | 2 | 0 | 0 | 0 | 19 |
| 4/20/10 | 3 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 18 | 0 | 0 | 0 | 0 | 6 |
| 4/21/10 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 15 | 1 | 0 | 0 | 1 | 2 |
| 4/22/10 | 3 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 19 | 1 | 0 | 0 | 0 | 2 |
| 4/23/10 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 4 | 0 | 22 | 3 | 0 | 0 | 0 | 4 |
| 4/24/10 | 5 | 0 | 2 | 2 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 21 | 0 | 0 | 0 | 0 | 2 |
| 4/25/10 | 8 | 0 | 6 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 22 | 5 | 0 | 0 | 0 | 5 |
| 4/26/10 | 3 | 0 | 3 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 9 | 3 | 0 | 0 | 0 | 1 |
| 4/27/10 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 5 | 3 | 0 | 0 | 0 | 1 |
| 4/28/10 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 3 |
| 4/29/10 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 3 | 2 | 0 | 0 | 0 | 2 |
| 4/30/10 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | $0$ | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 1 |
| 5/1/10 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | 1 | 0 | 0 | 0 | 2 |
| 5/2/10 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 12 | 1 | 0 | 0 | 0 | 1 |
| 5/3/10 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 7 | 0 | 8 | 2 | 0 | 0 | 0 | 2 |
| 5/4/10 | 2 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 4 | 0 | 12 | 1 | 0 | 0 | 0 | 0 |
| 5/5/10 | 1 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 15 | 0 | 0 | 0 | 0 | 2 |
| $5 / 6 / 10$ | 1 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 19 | 1 | 0 | 0 | 1 | 1 |
| 5/7/10 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 0 | 1 |


| Batch Date | BGS | BRB | CHC | GSF | GSN | LAM | LMB | MQK | PRS | RES | RSN | SASQ | SASU | SMB | TP | W | WHC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5/8/10 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 0 | 0 | 0 | 1 |
| 5/9/10 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 5 | 1 | 0 | 0 | 0 | 0 |
| 5/10/10 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 5 | 0 | 0 | 0 | 1 | 1 |
| 5/11/10 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 1 | 0 | 0 | 1 | 0 |
| 5/12/10 | 2 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 |
| 5/13/10 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 5 | 2 | 0 | 0 | 0 | 0 |
| 5/14/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 1 |
| 5/15/10 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 5/16/10 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 3 |
| 5/17/10 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
| 5/18/10 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5/19/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 3 |
| 5/20/10 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5/21/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5/22/10 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| 5/23/10 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 5/24/10 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
| 5/25/10 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 5 | 1 | 0 | 0 | 1 | 0 |
| 5/26/10 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5/27/10 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 5/28/10 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5/29/10 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| 5/30/10 | 2 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
| 5/31/10 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
| 6/1/10 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 |
| 6/2/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 6/3/10 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
| 6/4/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 6/5/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 6/6/10 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
| 6/7/10 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| 6/8/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $1$ | 0 | 2 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
| 6/9/10 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |
| 6/10/10 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
| 6/11/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |

## Appendix D. Daily counts of non-salmonids captured at Grayson during 2010.

| Batch Date | BAS | BGS | BKB | BKS | BRB | CHC | GF | GSN | LAM | LMB | LP | MQK | MSS | PRS | RES | RSN | SASQ | SASU | SMB | UNID | W | WHC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1/5/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| 1/6/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| 1/7/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| 1/8/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 |
| 1/9/10 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 4 | 5 | 0 | 0 | 1 | 0 | 0 | 5 |
| 1/10/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 1/11/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 |
| 1/12/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 3 |
| 1/13/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| 1/14/10 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 13 |
| 1/15/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 7 |
| 1/16/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| 1/17/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| 1/18/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
| 1/19/10 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 2 | 0 | 0 | 0 | 0 | 0 | 5 |
| 1/20/10 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 5 |
| 1/21/10 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 0 | 0 | 1 | 0 | 0 | 5 |
| 1/22/10 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1/23/10 | 0 | 4 | 0 | 0 | 0 | 1 | 0 | 0 | 3 | 2 | 0 | 2 | 2 | 0 | 2 | 1 | 0 | 0 | 3 | 0 | 0 | 2 |
| 1/24/10 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 2 | 1 | 2 | 0 | 4 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
| 1/25/10 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 3 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 1/26/10 | 0 | 7 | 0 | 0 | 2 | 0 | 0 | 1 | 2 | 0 | 0 | 1 | 0 | 0 | 12 | 0 | 0 | 1 | 2 | 0 | 0 | 5 |
| 1/27/10 | 0 | 6 | 0 | 1 | 1 | 0 | 0 | 3 | 0 | 1 | 0 | 3 | 0 | 0 | 9 | 0 | 0 | 1 | 0 | 0 | 0 | 5 |
| 1/28/10 | 0 | 7 | 0 | 0 | 1 | 0 | 0 | 3 | 0 | 2 | 1 | 5 | 0 | 0 | 7 | 0 | 0 | 0 | 1 | 0 | 0 | 16 |
| 1/29/10 | 0 | 2 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 7 | 2 | 0 | 0 | 1 | 0 | 0 | 5 |
| 1/30/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 7 |
| 1/31/10 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 1 |
| 2/1/10 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 4 |
| 2/2/10 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 5 |
| 2/3/10 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 1 | 3 |
| 2/4/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| 2/5/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 2/6/10 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 |
| 2/7/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 2/8/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
| 2/9/10 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 2 | 0 | 2 | 0 | 1 | 6 | 4 | 0 | 0 | 2 | 0 | 0 | 15 |
| 2/10/10 | 0 | 3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 6 | 0 | 3 | 0 | 1 | 14 | 10 | 0 | 0 | 0 | 0 | 0 | 27 |
| 2/11/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 1 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 5 |
| 2/12/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 6 |
| 2/13/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 16 |
| 2/14/10 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 28 |


| Batch Date | BAS | BGS | BKB | BKS | BRB | CHC | GF | GSN | LAM | LMB | LP | MQK | MSS | PRS | RES | RSN | SASQ | SASU | SMB | UNID | W | WHC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2/15/10 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 |
| 2/16/10 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2/17/10 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 5 | 0 | 0 | 0 | 0 | 0 | 14 |
| 2/18/10 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 5 |
| 2/19/10 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 8 |
| 2/20/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 |
| 2/21/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
| 2/22/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 8 |
| 2/23/10 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 |
| 2/24/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
| 2/25/10 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
| 2/26/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 |
| 2/27/10 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 8 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
| 2/28/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 1 | 2 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 26 |
| $3 / 1 / 10$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3/2/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $3 / 3 / 10$ | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 3 | 0 | 0 | 5 | 2 | 0 | 0 | 0 | 0 | 0 | 7 |
| 3/4/10 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 3 | 4 | 0 | 0 | 0 | 0 | 0 | 12 |
| 3/5/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3/6/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3/7/10 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 0 | 0 | 2 | 0 | 0 | 0 |
| 3/8/10 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 7 |
| 3/9/10 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 3 |
| 3/10/10 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 2 |
| 3/11/10 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 4 | 0 | 0 | 0 | 0 | 0 | 2 |
| $3 / 12 / 10$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
| $3 / 13 / 10$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $3 / 14 / 10$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
| 3/15/10 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 |
| 3/16/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| 3/17/10 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 7 |
| 3/18/10 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
| 3/19/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 4 |
| 3/20/10 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| 3/21/10 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
| 3/22/10 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 |
| 3/23/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | 0 | 0 | 9 |
| 3/24/10 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 5 | 1 | 0 | 0 | 0 | 0 | 0 | 8 |
| 3/25/10 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 |
| 3/26/10 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
| 3/27/10 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 3 |
| 3/28/10 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |


| Batch Date | BAS | BGS | BKB | BKS | BRB | CHC | GF | GSN | LAM | LMB | LP | MQK | MSS | PRS | RES | RSN | SASQ | SASU | SMB | UNID | W | WHC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3/29/10 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
| 3/30/10 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3/31/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 4/1/10 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 4/2/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 4/3/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| 4/4/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 4/5/10 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
| 4/6/10 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 5 |
| 4/7/10 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 10 |
| 4/8/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 |
| 4/9/10 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 2 |
| 4/10/10 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 2 |
| 4/11/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 4/12/10 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 5 |
| 4/13/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 7 |
| 4/14/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
| 4/15/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 |
| 4/16/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | 0 | 7 |
| 4/17/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 |
| 4/18/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
| 4/19/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| 4/20/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 3 | 0 | 0 | 0 | 0 | 4 |
| 4/21/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 4/22/10 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
| 4/23/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 13 | 0 | 0 | 0 | 0 | 1 |
| 4/24/10 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 18 | 0 | 0 | 0 | 0 | 0 |
| 4/25/10 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 20 | 0 | 0 | 0 | 0 | 3 |
| 4/26/10 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 3 | 0 | 0 | 0 | 0 | 9 | 0 | 0 | 0 | 0 | 3 |
| 4/27/10 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 4 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 2 |
| 4/28/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
| 4/29/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 1 |
| 4/30/10 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5/1/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
| 5/2/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5/3/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 5/4/10 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
| 5/5/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5/6/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5/7/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5/8/10 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
| 5/9/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |


| Batch Date | BAS | BGS | BKB | BKS | BRB | CHC | GF | GSN | LAM | LMB | LP | MQK | MSS | PRS | RES | RSN | SASQ | SASU | SMB | UNID | W | WHC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5/10/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 |
| 5/11/10 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5/12/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
| 5/13/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5/14/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 5/15/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 5/16/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 5/17/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5/18/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5/19/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5/20/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5/21/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
| 5/22/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 5/23/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5/24/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 2 | 6 | 1 | 1 | 0 | 0 | 0 | 2 |
| 5/25/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 |
| 5/26/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 1 | 0 | 0 | 0 | 0 | 0 |
| 5/27/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 5/28/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 5/29/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
| 5/30/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 1 |
| 5/31/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 3 |
| 6/1/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 |
| 6/2/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 1 |
| 6/3/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 6/4/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| 6/5/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 6/6/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 6/7/10 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 6/8/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 3 |
| 6/9/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 6/10/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 6/11/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 6/12/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 6/13/10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 6/14/10 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 6/15/10 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| 6/16/10 | 4 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| 6/17/10 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

## Key to species codes

| BAS | Unidentified bass |
| :--- | :--- |
| BGS | Bluegill |
| BKB | Black bullhead |
| BKS | Black crappie |
| BRB | Brown bullhead |
| CHC | Channel catfish |
| CHN | Chinook |
| GF | Goldfish |
| GSF | Green sunfish |
| GSN | Golden shiner |
| LAM | Lamprey, unidentified species |
| LMB | Largemouth bass |
| LP | Bigscale logperch |
| MQK | Mosquitofish |
| MSS | Inland silverside |
| PRS | Prickly sculpin |
| RES | Redear sunfish |
| RSN | Red shiner |
| SASQ | Sacramento pikeminnow |
| SASU | Sacramento sucker |
| SMB | Smallmouth bass |
| TP | Tule perch |
| UNID | Unidentified species |
| W | Warmouth |
| WHC | White catfish |


[^0]:    ${ }^{1}$ Passage estimate reported in the annual report cited.
    ${ }^{2}$ Passage estimate derived from multiple regression equation based on data collected from 1999-2006 and 2008 as described in this report.

[^1]:    ${ }^{3}$ Excludes 18 adult salmon of unknown gender.

